亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來(lái)到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? detailed description of the major calc functions.htm

?? calc大數(shù)庫(kù)
?? HTM
?? 第 1 頁(yè) / 共 4 頁(yè)
字號(hào):
?<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!-- saved from url=(0046)http://www.numbertheory.org/calc/calc_doc.html -->
<HTML><HEAD><TITLE>DETAILED DESCRIPTION OF THE MAJOR CALC FUNCTIONS</TITLE>
<META http-equiv=Content-Type content="text/html; charset=utf-8">
<STYLE type=text/css>BODY {
	FONT-FAMILY: Helvetia, sans-serif
}
A:visited {
	TEXT-DECORATION: none
}
A:link {
	TEXT-DECORATION: none
}
A:hover {
	TEXT-DECORATION: underline
}
H3 {
	TEXT-ALIGN: center
}
</STYLE>

<META content="MSHTML 6.00.2900.2180" name=GENERATOR></HEAD>
<BODY bgColor=#ffffff>
<H3 align=center>Detailed description of the major CALC functions</H3>For anyone 
interested in using my multiprecison arithmetic programs, the following 
functions are the ones that would be useful. There are many others lurking in 
the background.<BR>I designed my CALC program along the lines of the calculator 
programs hoc 1,2,3 in "The UNIX Programming Environment" by B.W. Kernighan and 
R. Pike, Prentice-Hall 1984.<BR>Life is more complicated than in K and R's 
calculator program, as I deal with MPI's, whereas K and P deal only with 
floating point numbers.<BR>I should add that it has been pointed out to me that 
my basic multiplication routine is rather primitive, being along the lines of 
Flander's book.<BR>One has to add any new functions to the file <TT>init.c</TT>. 
This may occasion the need to fashion a new type of prototype function in 
<TT>parse.y</TT>.<BR>There are two basic types that are parsed: a builtin - 
which returns an MPI and a builtinv - which does not.<BR>Programming is made 
tediously complicated by the need to free objects as soon as possible after they 
are created, in order to avoid a possibly massive buildup of program size at 
execution time. One way in which I achieve this is to ensure that at program's 
end, a variable <CODE>nettbytes</CODE> has final value zero. The calculation of 
<CODE>nettbytes</CODE> is switched on in the Makefile. 
<P>R0=2<SUP>16</SUP><BR>USI stands for unsigned int<BR>USL stands for unsigned 
long<BR>An MPI is a multiprecision integer<BR>An MPMATI is a matrix of 
multiprecision integers<BR>An MPR is a multiprecision rational<BR>An MPMATR is a 
matrix of multiprecision rationals<BR>An MPIA is an array of MPI's<BR>A POLYI is 
a polynomial with MPI coefficients<BR>X is a reserved symbol, for use in 
polynomials<BR>Stack is used in STURM and also in the wrappers to functions for 
later use in init.c. It is only in the latter context that I use 
Stack.<BR></P>In what follows I have made no distinction between *Aptr,**Aptr 
and Aptr, in the interests of simplicity. 
<HR>

<DL>
  <DT>MPI *ABSI(MPI *Aptr): i5m.c 
  <DD><SMALL>Returns |Aptr|.</SMALL> 
  <DT>void ADD_TO_MPIA(MPIA MA, MPI *V, USL n): i5I.c 
  <DD><SMALL>Adds the supplied MPI at the subscript n. If slot already exists, 
  the MPI at that slot is freed and the new one is added. If n is greater than 
  the number of slots, then the array is correctly resized and the new MPI is 
  added. Slots between the previous last slots and the new subscript n are 
  initialised to zero.</SMALL> 
  <DT>MPI *ADD0I(MPI *Aptr, MPI *Bptr): i1.c 
  <DD><SMALL>Returns Aptr+Bptr, Aptr ≥ 0, Bptr ≥ 0.</SMALL> 
  <DT>MPI *ADD0_I(MPI *Aptr, unsigned long b): i1.c 
  <DD><SMALL>Returns Aptr+b, Aptr ≥ 0, b &lt; R0.</SMALL> 
  <DT>MPI *ADDI(MPI *Aptr, MPI *Bptr): i1.c 
  <DD><SMALL>Returns Aptr+Bptr.</SMALL> 
  <DT>MPI *ADDM(MPI *Aptr, MPI *Bptr, MPI *Mptr): i5m.c 
  <DD><SMALL>Returns Aptr+Bptr (mod Mptr), where 0 ≤ Aptr,Bptr &lt; 
  Mptr.</SMALL> 
  <DT>MPMATI *ADDMATI(MPMATI *Mptr, MPMATI *Nptr): i6I.c 
  <DD><SMALL>Returns Aptr+Bptr.</SMALL> 
  <DT>MPR *ADDR(MPR *Aptr, MPR *Bptr): i5R.c 
  <DD><SMALL>Returns Aptr+Bptr</SMALL> 
  <DT>void ADD_CUBICR(MPR *X1, MPR *Y1, MPR *X2, MPR *Y2, MPR **Xptr, MPR 
  **Yptr, MPR *A1, MPR *A2, MPR *A3, MPR *A4, MPR *A6): cubicr.c 
  <DD><SMALL>(Xptr,Yptr) is the sum of the two points (X1,Y1) and (X2,Y2) on the 
  elliptic curve 
  y<SUP>2</SUP>+A1·xy+A3·y=X<SUP>3</SUP>+A2·X<SUP>2</SUP>+A4·x+A6.<BR>See D. 
  Husemoller, Elliptic curves, page 25.</SMALL> 
  <DT>void ADD_ELLIPTIC_Q(MPR *X1, MPR *Y1, MPR *X2, MPR *Y2, MPR **Xptr, MPR 
  **Yptr, MPR *A, MPR *B): elliptic.c 
  <DD><SMALL>(Xptr, Yptr) is the sum of the two points (X1,Y1) and (X2,Y2) on 
  the rational elliptic curve y<SUP>2</SUP>=x<SUP>3</SUP>+AX+B, where 
  4A<SUP>3</SUP>+27b<SUP>2</SUP> is nonzero.</SMALL> 
  <DT>MPMATI *ADD_MULT_ROWI(USI p, USI q, MPI *Aptr, MPMATI *Mptr): i6I.c 
  <DD><SMALL>Returns the matrix obtained by adding Aptr times row p to row q of 
  Mptr.</SMALL> 
  <DT>MPMATI *ADD_MULT_ROWI0(USI p, USI q, MPI *Aptr, MPMATI *Mptr): i6I.c 
  <DD><SMALL>Overwrites Mptr by adding Aptr times row p to row q of 
  Mptr.</SMALL> 
  <DT>unsigned long ADDm(USL a, USL b, USL m): i5m.c 
  <DD><SMALL>Returns a+b(mod m), where 0 ≤ a,b &lt; m &lt; 
  2<SUP>32</SUP>.</SMALL> 
  <DT>void AXB(): nfunc.c 
  <DD><SMALL>This solves the linear system AX=B, where the coefficients of A,X,B 
  are integers. A short solution is found in the case of solubility, if N(A) is 
  nontrivial. The method is LLL-based.</SMALL> 
  <DT>void BASE_PADIC(MPI *B, MPI *N, MPIA *BASE, USI *j): p-adic.c 
  <DD><SMALL>This gives the base B expansion of N &gt; 
  0.<BR>BASE[]=BASE[0]+BASE[1]B+ ...+BASE[j]B<SUP>j</SUP>.<BR>The integer is 
  returned, along with BASE[] </SMALL>
  <DT>MPMATI *BASIS_REDUCTION(MPMATI *Bptr, MPMATI **Eptr, USI rowstage, USI m1, 
  USI n1): LLL.c 
  <DD><SMALL>Input: Bptr, a matrix of MPI's, whose first row is not 
  zero.<BR>Output: an MPMATI whose rows form a LLL reduced basis for the lattice 
  spanned by the rows of Bptr in the sense of the paper "Factoring polynomials 
  with rational coefficients" by A. K. Lenstra, H. W. Lenstra and L. Lovász, 
  Math. Ann. 261, 515-534 (1982).<BR>We use the modified version in "Solving 
  exponential Diophantine equations using lattice basis reduction algorithms" by 
  B. M. M. De Weger, J. No. Theory 26, 325-367 (1987). A change of basis matrix 
  Eptr is also returned.<BR>De Weger's algorithm has been changed to cater for 
  arbitrary matrices whose rows are now in general linearly dependent. <BR>We 
  use the fact that the Gram Schmidt process detects the first row which is a 
  linear combination of the preceding rows. We employ a modification of the LLL 
  algorithm outlined by M. Pohst in J. Symbolic Computation (1987)4, 123-127. 
  <BR>We call this the MLLL algorithm.<BR>The last sigma rows of the matrix Eptr 
  are relation vectors.<BR>(m1, n1) is usually taken to be (3, 4) for a quick 
  answer, but (1,1), while slower, usually provides shorter basis vectors and 
  multiplier.</SMALL> 
  <DT>MPI *BIG_MTHROOT(MPI *Aptr, unsigned int m): i8.c 
  <DD><SMALL>The integer part of the mth root of the positive MPI Aptr, 1 &lt; m 
  &lt; R0, is obtained by Newton's method, using the integer part function. (See 
  the article by [<A 
  href="http://www.numbertheory.org/calc/krm_calc.html#[Mat]">Matthews</A>].)</SMALL> 

  <DT>unsigned int BINARYB(MPI *N): binary.c 
  <DD><SMALL>Returns the number of binary digits of N.</SMALL> 
  <DT>MPI *BINOMIAL(USI n, USI m): i5m.c 
  <DD><SMALL>returns n choose m, where n ≥ m are unsigned integers.</SMALL> 
  <DT>MPI *BRENT_POLLARD(MPI *Nptr): primes1.c 
  <DD><SMALL>The Brent-Pollard method returns a proper factor of a composite MPI 
  Nptr. (see R. Brent, BIT 20, 176 - 184).</SMALL> 
  <DT>MPMATI *BUILDMATI(unsigned int m, unsigned int n): i6I.c 
  <DD><SMALL>Allocates space for an m x n matrix of MPI's.</SMALL> 
  <DT>MPMATR *BUILDMATR(unsigned int m, unsigned int n): i6R.c 
  <DD><SMALL>Allocates space for an m x n matrix of MPR's.</SMALL> 
  <DT>MPI *BUILDMPI(unsigned int n): i5I.c 
  <DD><SMALL>Mallocs space for an MPI of length n.<BR>If there is an MPI of this 
  size in the bank, then use it rather than malloc.</SMALL> 
  <DT>MPIA BUILDMPIA(): i5I.c 
  <DD><SMALL>Allocates space for an array initially of size 11 (enough to hold 
  a[0] to a[10] and sets these slots to contain the zero MPI. Extra MPI's are 
  added using ADD_TO_MPIA.</SMALL> 
  <DT>MPR *BUILDMPR( ): i5R.c 
  <DD><SMALL>Mallocs space for an MPR.</SMALL> 
  <DT>MPI *CEILINGI(MPI *A, MPI *B): i2.c 
  <DD><SMALL>Returns the least integer not less than A/B.</SMALL> 
  <DT>MPI *CFRAC_PERIOD(MPI *D): i5I.c 
  <DD><SMALL>Returns the period of the continued fraction of √D using the 
  half-period approach of Pohst and Zassenhaus.</SMALL> 
  <DT>MPI *CHANGE(unsigned long n): i5I.c 
  <DD><SMALL>Converts n, 0 ≤ n &lt; (R0)<SUP>2</SUP> to an MPI.</SMALL> 
  <DT>MPI *CHANGEI(long n): i5I.c 
  <DD>C<SMALL>onverts n, 0 ≤ |n| &lt; R0 to an MPI.</SMALL> 
  <DT>MPI *CHINESE(MPI *A, MPI *B, MPI *M, MPI *N, MPI **Mptr): nfunc.c 
  <DD><SMALL>Returns the solution mod Mptr=lcm[M,N] and Mptr) of the 
  simultaneous congruences X = A (mod M) and X = B (mod N), if soluble; 
  otherwise returns NULL.</SMALL> 
  <DT>MPI *CHINESE_ARRAY(MPI *A[ ], MPI *M[ ], MPI **Mptr, USI n): nfunc.c 
  <DD><SMALL>Returns the solution mod Mptr=lcm[M[0],...,M[n-1] and Mptr) of the 
  congruences X = A[i] (mod M[i]),0 ≤ i &lt; n, if soluble; otherwise returns 
  NULL.</SMALL> 
  <DT>MPMATR *CHOLESKYR(MPMATR *A): i6R.c 
  <DD><SMALL>Input: The positive definite matrix A.<BR>Output: The Cholesky 
  decomposition of A.<BR>(See U. Finke and M. Pohst, "Improved methods for 
  calculating vectors of short length in a lattice, including a complexity 
  analysis." Math. Comp. 44, 463-471, 1985.</SMALL> 
  <DT>MPI *COLLATZ(MPI *Dptr, *Eptr): nfunc.c 
  <DD><SMALL>The Collatz 3x+1 function. The iterates x,T(x),.. are printed iff 
  Eptr is nonzero.</SMALL> 
  <DT>MPMATI *COLSUBI(USI p, USI q, MPI *Aptr, MPMATI *Mptr): i6I.c 
  <DD><SMALL>Returns the result of subtracting Aptr times the p-th column of 
  Mptr from the q-th.<BR>0 ≤e p, q ≤ Mprt-&gt;C - 1.</SMALL> 
  <DT>MPI *COLSUMI(MPMATI *Mptr, USI j): i9.c 
  <DD><SMALL>Returns the sum of the elements of column j of Mptr.</SMALL> 
  <DT>int COMPAREI(MPI *Aptr, MPI *Bptr): i1.c 
  <DD><SMALL>Compares MPI's: Returns 1 if Aptr &gt; Bptr, 0 if Aptr = Bptr, -1 
  if Aptr &lt; Bptr.</SMALL> 
  <DT>int COMPARER(MPR *Aptr, MPR *Bptr): i6R.c 
  <DD><SMALL>Compares MPR's: Returns 1 if Aptr &gt; Bptr, 0 if Aptr = Bptr, -1 
  if Aptr &lt; Bptr.</SMALL> 
  <DT>MPI *CONGR(MPI *A, MPI *B, MPI *M, MPI **N): nfunc.c 
  <DD><SMALL>Returns the least solution (mod N) of the congruence AX=B(mod M) 
  (and N), where N = M / gcd(A, M); otherwise returns the null pointer.</SMALL> 
  <DT>MPI *CONTENTPI(POLYI Pptr): pI.c 
  <DD><SMALL>Cptr is the content of the polynomial Pptr.</SMALL> 
  <DT>void CONVERGENTS(MPI *A[], MPI **P[], MPI **Q[], MPI *N): i5I.c 
  <DD><SMALL>Returns the convergents P[0]/Q[0],...,P[N]/Q[N] to 
  [A[0];A[1],...,A[n]] as arrays P[ ] and Q[ ].</SMALL> 
  <DT>unsigned long CONVERTI(MPI *N): i5I.c 
  <DD><SMALL>Returns N as an unsigned long, providing 0 &lt; N &lt; 
  2<SUP>32</SUP>.</SMALL> 
  <DT>MPI *COPYI(MPI *Aptr): i5I.c 
  <DD><SMALL>Returns a copy of the MPI Aptr.</SMALL> 
  <DT>MPR *COPYR(MPR *Aptr): i5R.c 
  <DD><SMALL>Returns a copy of the MPR Aptr.</SMALL> 
  <DT>MPMATI *COPYMATI(MPMATI *Aptr): i6I.c 
  <DD><SMALL>Returns a copy of the MPMATI Aptr.</SMALL> 
  <DT>MPMATR *COPYMATR(MPMATR *Aptr): i6R.c 
  <DD><SMALL>Returns a copy of the MPMATR Aptr.</SMALL> 
  <DT>VOID CORNACCHIA(MPI *A, MPI *B, MPI *M): primes1.c 
  <DD><SMALL>This prints the positive primitive solutions (x,y) of 
  Ax<SUP>2</SUP>+By<SUP>2</SUP>=M, where A,B,M are positive integers, with 
  gcd(A,M)=1=gcd(A,B).</SMALL> 
  <DT>void CYCLE(USL d, MPI *m[ ], MPI *X[ ], USL INFINITY, USL RANGE): 
  collatz.c 
  <DD><SMALL>This function searches all trajectories of the d-branched 
  generalized Collatz function, which start from p, |p| &lt;= RANGE/2 (RANGE an 
  even integer). INFINITY is an upper bound for the size of a trajectory, above 
  which the trajecory is deemed to be divergent. Floyd's cycle finding algorithm 
  is used. Also see <A href="http://www.numbertheory.org/pdfs/survey.pdf">survey 
  (pdf)</A> by the author.</SMALL> 
  <DT>USL DAVISON(USL l, USL m, USL N): davison.c 
  <DD><SMALL>We perform the algorithm of J.L. Davison, <SMALL><EM>An algorithm 
  for the continued fraction of e<SUP>l/m</SUP></EM>, Proceedings of the Eighth 
  Manitoba Conference on Numerical Mathematics and Computing (Univ. Manitoba, 
  Winnipeg, 1978), 169-179, Congress. Numer., XXII, Utilitas Math.</SMALL> 
  <P>The starting point is a result of R.F.C. Walters in <SMALL><EM>Alternate 
  derivation of some regular continued fractions</EM>, J. Austr. Math. Soc 8 
  (1968), 205-212):</SMALL> If<BR>
  <P align=center><IMG 
  src="DETAILED DESCRIPTION OF THE MAJOR CALC FUNCTIONS.files/walters.gif" 
  align=middle><BR></P>then <EM>p<SUB>n</SUB>/r<SUB>n</SUB></EM> and 
  <EM>q<SUB>n</SUB>/s<SUB>n</SUB></EM> -&gt; <EM>e<SUP>l/m</SUP></EM><BR>We 
  first find the least n=n* such that 
  <EM>p<SUB>n</SUB>,q<SUB>n</SUB>,r<SUB>n</SUB>,s<SUB>n</SUB></EM> are 
  non-negative and repeatedly apply Raney's <A 
  href="http://www.numbertheory.org/php/raney.html">factorisation</A> for n*≤ k 
  ≤ n*+N, as in Davison's example in §3.<BR>The number (<EM>count</EM>) of 
  partial quotients of <EM>e<SUP>l/m</SUP></EM> found is returned.<BR>We cannot 
  predict the value of <EM>count</EM>, but it becomes positive for sufficiently 
  large N. We exit if 1,000,000 partial quotients are found.<BR></SMALL>
  <DT>POLYI DERIV(P): pI.c 
  <DD><SMALL>Returns the derivative of P.</SMALL> 
  <DT>MPI *DISCRIMINANT(POLYI P): pI.c 
  <DD><SMALL>Returns the discriminant of P, namely 
  (1/a<SUB>n</SUB>)(-1)<SUP>{n(n-1)/2</SUP> RESULTANT(P, P').<BR>See O. Perron, 
  Algebra, Vol 1, p.212.</SMALL> 
  <DT>MPI *DIVM(MPI *Aptr, MPI *Bptr, MPI *Mptr): i5m.c 
  <DD><SMALL>Returns (Aptr / Bptr) mod (Mptr).<BR>Here 0 ≤ Aptr, Bptr &lt; Mptr 
  and gcd(Bptr, Mptr) = 1.</SMALL> 
  <DT>unsigned long DIVm(USL a, USL b, USL m): i5m.c 
  <DD><SMALL>Returns a / b mod m if m &gt; 0<BR>Here 0 ≤ a, b &lt; m &lt; R0, 
  gcd(b, m) = 1 if m &gt; 0&gt;</SMALL> 
  <DT>MPI *DOTRI(MPMATI *Mptr, USI i, USI j): i7I.c 
  <DD><SMALL>Returns the dot product of rows i and j in Mptr.</SMALL> 
  <DT>MPI *EFACTOR(MPI *N, USI m, USI p): elliptic.c 
  <DD><SMALL>The elliptic curve method is used to try to find a factor of a 
  composite number N.<BR>Here m, p &lt; 2<SUP>32</SUP> and 1279 ≥ m &gt; 10, p ≥ 
  1.</SMALL> 

?? 快捷鍵說(shuō)明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
一本大道综合伊人精品热热| 亚洲视频一二区| 粉嫩aⅴ一区二区三区四区五区| 亚洲欧美自拍偷拍色图| 欧美老肥妇做.爰bbww| 国产激情视频一区二区三区欧美 | 欧美久久免费观看| 国产91丝袜在线播放九色| 亚洲小说欧美激情另类| 欧美国产禁国产网站cc| 日韩视频免费直播| 色素色在线综合| 国产69精品久久久久777| 午夜视黄欧洲亚洲| 亚洲视频免费观看| 久久精品免费在线观看| 91.麻豆视频| 91国偷自产一区二区三区成为亚洲经典 | 91国在线观看| www.视频一区| 国产做a爰片久久毛片| 亚洲电影第三页| 中文字幕一区日韩精品欧美| 91精选在线观看| 精久久久久久久久久久| 一区av在线播放| 国产精品久久久久久久久搜平片| 日韩欧美高清dvd碟片| 欧美私模裸体表演在线观看| 91女神在线视频| 91在线你懂得| 成人91在线观看| 成人免费毛片a| 国产成人在线看| 国产夫妻精品视频| 国产在线视频精品一区| 久色婷婷小香蕉久久| 日韩精彩视频在线观看| 午夜一区二区三区视频| 夜夜爽夜夜爽精品视频| 亚洲综合丁香婷婷六月香| 亚洲精品网站在线观看| 亚洲欧美日韩精品久久久久| 中文字幕中文在线不卡住| 中文字幕 久热精品 视频在线| 久久嫩草精品久久久精品| 欧美精品一区视频| 久久夜色精品国产欧美乱极品| 精品国产99国产精品| 26uuu精品一区二区三区四区在线 26uuu精品一区二区在线观看 | 欧美日韩电影在线| 欧美日韩视频第一区| 欧美日韩高清在线| 88在线观看91蜜桃国自产| 欧美二区在线观看| 日韩欧美另类在线| 精品国产青草久久久久福利| 精品久久久久久久久久久久包黑料| 欧美不卡一区二区| 久久精品一区八戒影视| 欧美国产日韩亚洲一区| 亚洲人被黑人高潮完整版| 一区二区三区在线观看欧美 | 国产精品久久精品日日| 亚洲欧美在线aaa| 一区二区三区波多野结衣在线观看| 亚洲一区二区在线视频| 日韩电影免费在线看| 久久99精品国产麻豆婷婷| 国产成人在线视频网站| 99精品国产一区二区三区不卡| 色视频一区二区| 日韩一区二区免费在线观看| 久久午夜国产精品| 亚洲欧美日韩一区二区三区在线观看| 亚洲激情综合网| 美日韩一区二区| 丁香婷婷综合色啪| 欧美视频第二页| 精品国产乱码久久久久久蜜臀| 中文字幕国产精品一区二区| 亚洲一二三区不卡| 国内成人免费视频| 日本精品一级二级| 精品va天堂亚洲国产| 亚洲欧美日韩久久精品| 免费成人在线观看视频| 成人激情文学综合网| 91精品在线观看入口| 国产精品色哟哟| 人人狠狠综合久久亚洲| www.亚洲色图.com| 日韩一卡二卡三卡国产欧美| 中文字幕免费不卡| 日本免费在线视频不卡一不卡二| 成人丝袜高跟foot| 日韩一区二区免费电影| 综合欧美亚洲日本| 美女在线视频一区| 91麻豆产精品久久久久久| 精品日韩一区二区| 亚洲国产一区二区视频| 国产精华液一区二区三区| 欧美日韩中文国产| 国产精品免费免费| 老司机精品视频导航| 欧美日韩一级大片网址| 中文字幕欧美三区| 狠狠色丁香久久婷婷综| 欧美日韩一区二区三区免费看| 国产精品成人网| 久草这里只有精品视频| 欧美日韩在线一区二区| 中文字幕在线免费不卡| 国产一区福利在线| 制服丝袜av成人在线看| 一区二区在线电影| bt欧美亚洲午夜电影天堂| 2014亚洲片线观看视频免费| 亚洲第一二三四区| 色综合 综合色| 国产精品久久久久久久久搜平片 | 国产一区二区免费在线| 91精品国产色综合久久不卡电影| 亚洲图片你懂的| 懂色一区二区三区免费观看| 精品国产乱码久久久久久图片| 蜜臀av性久久久久蜜臀aⅴ流畅| 欧美手机在线视频| 亚洲精选视频免费看| av在线不卡网| 亚洲国产激情av| 成人自拍视频在线| 国产色综合一区| 国产精品69毛片高清亚洲| 精品播放一区二区| 国产精品白丝av| 久久久久久久久久久久久女国产乱| 美女脱光内衣内裤视频久久网站 | 国产在线国偷精品免费看| 欧美一区二区成人| 免费在线一区观看| 日韩一区二区三区免费看| 热久久久久久久| 久久亚洲精精品中文字幕早川悠里| 九九热在线视频观看这里只有精品| 日韩一区二区电影在线| 九九精品一区二区| 久久久久综合网| 床上的激情91.| 亚洲三级免费观看| 欧美亚洲综合在线| 日韩国产精品久久| 精品国产乱码久久久久久久久| 韩日欧美一区二区三区| 久久久www成人免费毛片麻豆| 国产69精品久久99不卡| 中文字幕日韩av资源站| 在线亚洲一区观看| 日韩精品1区2区3区| 欧美精品一区二区久久婷婷| 国产一区二区福利视频| 国产精品欧美一区二区三区| 91视频com| 天堂影院一区二区| 久久一留热品黄| 日本韩国一区二区三区视频| 五月激情六月综合| 国产亚洲精品精华液| 91亚洲永久精品| 日韩黄色免费网站| 国产婷婷色一区二区三区在线| a亚洲天堂av| 免费美女久久99| 国产精品久久久久桃色tv| 欧美日韩欧美一区二区| 国产一区二区调教| 亚洲麻豆国产自偷在线| 欧美一级生活片| 丁香另类激情小说| 亚洲午夜激情网站| 久久午夜国产精品| 欧美日韩在线播放| 国产一区免费电影| 亚洲成av人片在线| 国产色爱av资源综合区| 欧美性猛片xxxx免费看久爱| 激情六月婷婷久久| 一区二区三区不卡视频| 久久九九全国免费| 欧美理论电影在线| 99re6这里只有精品视频在线观看| 日韩高清国产一区在线| 国产精品久久久一区麻豆最新章节| 欧美日韩高清一区二区三区| 国产成人精品一区二| 日本91福利区| 亚洲一级不卡视频| 国产精品网站在线播放| 日韩一级片在线观看|