亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? detailed description of the major calc functions.htm

?? calc大數庫
?? HTM
?? 第 1 頁 / 共 4 頁
字號:
  <DT>unsigned int EQUALI (MPI *Aptr, MPI *Bptr): i5I.c 
  <DD><SMALL>Returns 1 if Aptr = Bptr, otherwise = 0.</SMALL> 
  <DT>unsigned int EQUALR (MPR *Aptr, MPR *Bptr): i5R.c 
  <DD><SMALL>Returns 1 if Aptr = Bptr, otherwise = 0.</SMALL> 
  <DT>unsigned int EQMINUSONECI(MPCI *Mptr): i3.c 
  <DD><SMALL>Returns 1 if Mptr = -1, 0 otherwise.</SMALL> 
  <DT>unsigned int EQMINUSONECR(MPCR *Mptr): i3.c 
  <DD><SMALL>Returns 1 if Mptr = -1, 0 otherwise.</SMALL> 
  <DT>unsigned int EQMINUSONEI(MPI *Mptr): i3.c 
  <DD><SMALL>Returns 1 if Mptr = -1, 0 otherwise.</SMALL> 
  <DT>unsigned int EQMINUSONER(MPR *Mptr): i3.c 
  <DD><SMALL>Returns 1 if Mptr = -1, 0 otherwise.</SMALL> 
  <DT>unsigned int EQONEI(MPI *Mptr): i3.c 
  <DD><SMALL>Returns 1 if Mptr = 1, 0 otherwise.</SMALL> 
  <DT>unsigned int EQONER(MPR *Mptr): i3.c 
  <DD><SMALL>Returns 1 if Mptr = 1, 0 otherwise.</SMALL> 
  <DT>unsigned int EQONECI(MPCI *Mptr): i3.c 
  <DD><SMALL>Returns 1 if Mptr = 1, 0 otherwise.</SMALL> 
  <DT>unsigned int EQONECR(MPCR *Mptr): i3.c 
  <DD><SMALL>Returns 1 if Mptr = 1, 0 otherwise.</SMALL> 
  <DT>unsigned int EQZEROI(MPI *Mptr): i3.c 
  <DD><SMALL>Returns 1 if Mptr = 0, but 0 otherwise.</SMALL> 
  <DT>unsigned int EQZEROR(MPR *Mptr): i3.c 
  <DD><SMALL>Returns 1 if Mptr = 0, but 0 otherwise.</SMALL> 
  <DT>unsigned int EQZEROCI(MPCI *Mptr): i3.c 
  <DD><SMALL>Returns 1 if Mptr = 0, but 0 otherwise.</SMALL> 
  <DT>unsigned int EQZEROCR(MPCR *Mptr): i3.c 
  <DD><SMALL>Returns 1 if Mptr = 0, but 0 otherwise.</SMALL> 
  <DT>MPI *EUCLIDI(MPI *Pptr, MPI *Qptr, MPI **Hptr, MPI **Kptr): nfunc.c 
  <DD><SMALL>Returns gcd(Pptr, Qptr) = Hptr · Pptr + Kptr · Qptr.</SMALL> 
  <DT>MPI *EUCLIDI1(MPI *Pptr, MPI *Qptr): i5I.c 
  <DD><SMALL>Returns the length of Euclid's algorithm for Pptr/Qptr.</SMALL> 
  <DT>void EUCLID(MPI *Aptr, MPI *Bptr, MPI **Q[ ], MPI **R[ ], MPI **S[ ], MPI 
  **T[ ], MPI **Dptr) 
  <DD><SMALL>Returns Q[0]=NULL,Q[1],...Q[n],Q[n+1]=NULL,<BR>* R[0],...R[n + 
  1],<BR>* S[0],...S[n + 1], T[0],...T[n + 1]<BR>* for Euclid's algorithm on 
  R[0]=Aptr, R[1]=Bptr.<BR>* R[0]=R[1]*Q[1]+R[2]<BR>* R[1]=R[2]*Q[2]+R[3]<BR>* 
  .....<BR>* R[n-2]=R[n-1]*Q[n-1]+R[n]<BR>* R[n-1]=R[n]*Q[n], R[n+1]=0.<BR>* 
  S[0]=1,S[1]=0, S[j]=s[j-2]-Q[j-1]*S[j-1],<BR>* T[0]=0,T[1]=1, 
  T[j]=T[j-2]-Q[j-1]*T[j-1], j=2,...,n+1<BR>* Here *Dptr = n.<BR></SMALL>
  <DT>MPI *EULER(MPI *N): primes1.c 
  <DD><SMALL>Returns Euler's function phi(N).</SMALL> 
  <DT>FACTOR(Mptr *Nptr): primes1.c 
  <DD><SMALL>Attempts to factor Nptr using the Multiple Polynomial Quadratic 
  sieve.<BR>If that fails, it uses the elliptic curve method. (No Peter 
  Montgomery fine-tuning.)<BR>I suggest one uses it for 55 or less digit 
  numbers.</SMALL> 
  <DT>unsigned long *FFI(USL N, USL *b, USL w, USL p): i5m.c 
  <DD><SMALL>Fast Fourier Interpolation.<BR>Here N is a power of 2, b is an 
  array of N elements from Z<SUB>p</SUB>,<BR>w is a primitive N-th root of unity 
  mod p and N | p - 1.<BR>Outputs 
  a(x)=a[0]x<SUP>0</SUP>+···+a[0]x<SUP>N-1</SUP>, where a(w<SUP>k</SUP>)=b[k], 0 
  ≤ k &lt; N.<BR>(See "Elements of Algebra and Algebraic Computing", J.D. 
  Lipson, p.303.<BR>I have been unable to free the arrays B and C, due to the 
  way the recursion works. </SMALL>
  <DT>unsigned long *FFP(USL N, USL *a, USL *b, USL m, USL n, USL w, USL p): 
  i5m.c 
  <DD><SMALL>Input: arrays a and b of USL's mod p, representing polynomials 
  <BR>of degrees m, n, respectively; N = 2<SUP>e</SUP> &gt; m + n, N | p - 1. w 
  is a primitive N-th root of unity mod p.<BR>Output: array c mod p, 
  representing a(x)b(x).</SMALL> 
  <DT>MPI *CRA(USL n, USL *a, USL *m): i5m.c 
  <DD><SMALL>Garner's Chinese Remainder Theorem.<BR>Page 180, <EM>Algorithms for 
  computer algebra</EM>, K.O. Geddes, S.R. Czapor, G. Labahn.<BR>Here 
  gcd(m[i],m[j])=1 if i != j.<BR>Returns the least remainder mod(m[0].....m[n]) 
  of u = a[i]mod(m[i]), 0 &lt; =i &lt; = n.</SMALL> 
  <DT>MPI *FFM(MPI *a, MPI *b, USL K): i5m.c 
  <DD><SMALL>Returns the product of a=(a[0],...,a[m])<SUB>B</SUB> and 
  b=(b[0],...,b[n])<SUB>B</SUB>, B=2<SUP>16</SUP>,<BR>m = a-&gt;D, n = b-&gt;D, 
  using the Discrete Fast Fourier Transform.<BR>Let M = min(m,n). Then 
  a(x)b(x)=c(x), where 0 ≤ c[k] &lt; (M+1)B<SUP>2</SUP>.<BR>Using the CRA mod 
  fp[i] for 0 ≤ i ≤ K-1, enables us to reconstruct c(B),<BR>provided that 
  fp[0]···fp[K-1] ≥ (M+1)B<SUP>2</SUP>.<BR>We also need m+n &lt; N = 
  2<SUP>e</SUP>, where N | fp[i] - 1.<BR>If m &lt;B and n &lt; B, then M &lt; B, 
  then K=3 primes suffice as fp[i]&gt;=B<BR>and we take e&gt;=17.<BR>If m &lt; 
  2<SUP>26</SUP> and n &lt; 2<SUP>26</SUP>, then M &lt; 2<SUP>26</SUP>, then K=4 
  primes suffice and we take e &gt; = 27, N = 2^27.<BR>External 
  variables:<BR>fp[0] = 2013265921, lprimroot[0] = 31, primitive Nth root = 
  440564289;<BR>fp[1] = 2281701377, lprimroot[1] = 3, primitive Nth root = 
  129140163;<BR>fp[2] = 3221225473, lprimroot[2] = 5, primitive Nth root = 
  229807484;<BR>fp[3] = 3489660929, lprimroot[3] = 3, primitive Nth root = 
  1392672017.<BR>See <EM>Elements of Algebra and Algebraic Computing</EM>, J.D. 
  Lipson, p.310.<BR>I do not use FFM, as my implementation seems slow. If the 
  user wants to invoke it, go to i1.c and uncomment the relevant parts of MULTI( 
  ).</SMALL> 
  <DT>MPI *FIBONACCI(USI n): functions.c 
  <DD><SMALL>Returns the nth Fibonacci number.</SMALL> 
  <DT>void FINCKE_POHST(MPMATR *A, MPR *C): i6R.c 
  <DD><SMALL>Input: A matrix of integers A with LI rows spanning a lattice 
  L.<BR>Output: The integer vectors X with ||X||<SUP>2</SUP> ≤ C, highest 
  nonzero coord ≤ 0.<BR>(See <EM>Improved methods for calculating vectors of 
  short length<BR>in a lattice including a complexity analysis</EM>,<BR>U. 
  Fincke and M. Pohst, Mathematics of Computation, 44, 1985, 463-471.</SMALL> 
  <DT>MPI *FINPUTI(FILE *f, unsigned int *uptr): i5I.c 
  <DD><SMALL>Converts decimal input from stream into an MPI Mptr.<BR>Ignores the 
  combination '\' followed by '\n'.<BR>If a rubbish character is met before 
  decimal input, Mptr is set to 0<BR>and 0 is returned. All characters up to and 
  including the first newline<BR>met are wiped.<BR>If a rubbish character is met 
  immediately after decimal input,<BR>uptr = 0 is returned and all characters up 
  to and including <BR>the first newline met are wiped. Otherwise 1 is 
  returned.<BR>In any case Mptr is set equal to any inputted decimal.</SMALL> 
  <DT>MPMATI *FINPUTMATI(FILE *infile): i6I.c 
  <DD><SMALL>Inputs a matrix of MPI's from infile.</SMALL> 
  <DT>MPR *FINPUTR(FILE *f, unsigned int *uptr): i5R.c 
  <DD><SMALL>Converts the ratio of two decimal inputs from stream into an 
  MPR.<BR>uptr = 0 if input fails, 1 if successful.</SMALL> 
  <DT>void FPRINTI(FILE *outfile, MPI *Mptr): i5I.c 
  <DD><SMALL>The MPI Mptr is printed in decimal notation to outfile.<BR>No 
  new-line is incorporated.</SMALL> 
  <DT>void FPRINTMATI(FILE *outfile, USI i1, USI i2, USI j1, USI j2, MPMATI 
  *Mptr): i6I.c 
  <DD><SMALL>Printing an MPMATI to outfile.</SMALL> 
  <DT>void FPRINTMATR(FILE *outfile, USI i1, USI i2, USI j1, USI j2, MPMATR 
  *Mptr): i6I.c 
  <DD><SMALL>Printing an MPMATR to outfile.</SMALL> 
  <DT>void FPRINTR(FILE *outfile, MPR *Aptr): i5R.c 
  <DD><SMALL>prints the MPR Aptr as (Aptr-&gt;N)/(Aptr-&gt;D).</SMALL> 
  <DT>MPR *FRAC_PARTI(MPI *Aptr, MPI *Bptr): i5R.c 
  <DD><SMALL>Returns the fractional part of Aptr/Bptr.</SMALL> 
  <DT>MPR *FRAC_PARTR(MPR *Aptr): i5R.c 
  <DD><SMALL>Returns the fractional part of Aptr.</SMALL> 
  <DT>void FREEMATI(MPMATI *Mptr): i6I.c 
  <DD><SMALL>Frees the storage allocated to the 2-dimensional array 
  Mptr-&gt;V.</SMALL> 
  <DT>void FREEMATR(MPMATR *Mptr): i6R.c 
  <DD><SMALL>Frees the storage allocated to the 2-dimensional array 
  Mptr-&gt;V.</SMALL> 
  <DT>void FREEMPI(MPI *Mptr): i5I.c 
  <DD><SMALL>Deallocates the space alloted for the MPI Mptr.<BR></SMALL>
  <DT>void FREEMPIA(MPI *Mptr): i5I.c 
  <DD><SMALL>Frees an MPIA previously returned by BUILDMPIA. It will free all 
  the the MPI's in the MPIA.</SMALL> 
  <DT>void FREEMPR(MPR *Mptr): i5R.c 
  <DD><SMALL>Deallocates the space alloted for the MPR Mptr.<BR></SMALL>
  <DT>MPI *FUND_UNIT(MPI *D, MPI **Xptr, MPI **Yptr): nfunc.c 
  <DD><SMALL>This is a program for finding the fundamental unit of 
  Q(sqrt(D)).<BR>The algorithm is based on:<BR>K. Rosen, <EM>Elementary number 
  theory and its applications</EM>, p382,<BR>B.A. Venkov, <EM>Elementary Number 
  theory</EM>, p.62 <BR>D. Knuth, <EM>Art of computer programming</EM>, Vol.2, 
  p359,<BR>with Pohst's trick of using half the period.<BR>w=(1+sqrt(D))/2 if 
  D=1 (mod 4), w=sqrt(D) otherwise.<BR>The norm of the fundamental unit Xptr + 
  Yptr·w is returned.</SMALL> 
  <DT>MPI *GCD(MPI *Aptr, MPI *Bptr): i5I.c 
  <DD><SMALL>Returns GCD(|Aptr|, |Bptr|).</SMALL> 
  <DT>MPI *GCD_ARRAY(MPI *M[ ], unsigned int n): i5I.c 
  <DD><SMALL>Returns GCD(M[0], ..., M[n - 1]).</SMALL> 
  <DT>MPI *GCD_ARRAYV(MPI *M[ ], MPI **Y[ ], USI n): nfunc.c 
  <DD><SMALL>Returns d=gcd(M[0],...,M[n-1]) and an array Y[ ] of MPI's<BR>such 
  that d = M[0]Y[0]+···+M[n-1]Y[n-1]. Here n &gt; 1.</SMALL> 
  <DT>unsigned long GCDm(USL m, USL n): i5m.c 
  <DD><SMALL>Returns gcd(m,n)&gt;</SMALL> 
  <DT>void GetReturn( ): menu.c 
  <DD><SMALL>Waits for a return to be entered from the keyboard.</SMALL> 
  <DT>unsigned int GetYN( ): menu.c 
  <DD><SMALL>Gets a character from the keyboard, making sure it's a<BR>y or an n 
  (either case). If at first the user doesn't succeed,<BR>he/she tries, tries 
  again. 0 is returned if n, 1 if y.</SMALL> 
  <DT>MPI *HALFMOD(MPI *A, MPI *B): i2.c 
  <DD><SMALL>Here B &gt; 0. Returns R=A(mod B) if R ≤ B/2, otherwise R-B. 
  </SMALL>
  <DT>MPMATI *HERMITE1(MPMATI *Aptr, USI *T, USI nz): i6I.c 
  <DD><SMALL>(Kannan-Bachem) Returns the Hermite normal form of Aptr.</SMALL> 
  <DT>MPMATI *HERMITE1P(MPMATI *Aptr, MPMATI *Pptr, MPMATI **Qptr, USI *T, USI 
  nz): i6I.c 
  <DD><SMALL>(Kannan-Bachem) Returns the Hermite normal form of Aptr<BT> and a 
  transforming unimodular matrix Pptr.</SMALL> 
  <DT>MPMATI *IDENTITYI(USI n): i6I.c 
  <DD><SMALL>Returns the identity matrix of size n.</SMALL> 
  <DT>MPI *INPUTI(unsigned int *uptr): i5I.c 
  <DD><SMALL>Inputs an MPI from the keyboard.<BR></SMALL>
  <DT>MPR *INPUTR(unsigned int *uptr): i5I.c 
  <DD><SMALL>Inputs an MPR from the keyboard.<BR>uptr=1 if no corruption takes 
  place, else 0.</SMALL> 
  <DT>MPMATI *INPUTMATI( ): i6I.c 
  <DD><SMALL>Inputs a matrix of MPI's from stdin.</SMALL> 
  <DT>MPI *INT0(MPI *Aptr, MPI *Bptr): i2.c 
  <DD><SMALL>Returns the integer part of Aptr/Bptr,<BR>where Aptr,Bptr &gt; 
  0.</SMALL> 
  <DT>MPI *INT0_(MPI *Aptr, unsigned long b): i2.c 
  <DD><SMALL>Returns the integer part of Aptr/b,<BR>where Aptr &gt; 0 and 0 &lt; 
  b &lt; R0.</SMALL> 
  <DT>MPI *INT(MPI *Aptr, MPI *Bptr): i2.c 
  <DD><SMALL>Returns the integer part of Aptr/Bptr,<BR>where Bptr &gt; 
  0.</SMALL> 
  <DT>MPI *INT_(MPI *Aptr, USL b): i2.c 
  <DD><SMALL>Returns the integer part of Aptr/b, 0 &lt; b &lt; R0.</SMALL> 
  <DT>MPI *INTI(MPI *Aptr, MPI *Bptr): i2.c 
  <DD><SMALL>Returns the integer part of Aptr/Bptr.</SMALL> 
  <DT>MPR *INTR(MPR *Aptr): i5R.c 
  <DD><SMALL>Returns the integer part of Aptr.</SMALL> 
  <DT>MPI *INVERSEM(MPI *Nptr, MPI *Mptr): i5m.c 
  <DD><SMALL>Returns the inverse of Nptr (mod Mptr).<BR>Here gcd(Nptr,Mptr) = 1, 
  1 ≤ Nptr &lt; Mptr. <BR>(See Knuth, p. 325.)</SMALL> 
  <DT>MPR *INVERSER(MPR *Aptr): i5R.c 
  <DD><SMALL>Returns 1/ Aptr.</SMALL> 
  <DT>unsigned long INVERSEm(USL n, USL m): i5m.c 
  <DD><SMALL>Returns the inverse of n (mod m).<BR>Here 1 ≤ n &lt; m &lt; 
  2<SUP>32</SUP>, gcd(n, m) = 1.</SMALL> 
  <DT>MPI *JACOB(MPI *M, MPI *N): func.c 
  <DD><SMALL>Returns the Jacobi symbol (M/N), N odd, N &gt; 0.</SMALL> 
  <DT>int JACOBI(USL n, USL m): qres.c 
  <DD><SMALL>Returns the Jacobi symbol (n/m), m odd, 0 &lt; n &lt; m.</SMALL> 
  <DT>MPMATI *JACOBIGCD(MPMATI *DD, MPI **Aptr, USI m): LLLGCD.c 
  <DD><SMALL>Input: an m x 1 vector DD of positive MPI's.<BR>Output: Aptr = gcd 
  of the DD[i]. Also we return a set of<BR>multipliers using a version of a 
  method of Jacobi<BR>A unimodular transforming matrix B is returned.</SMALL> 
  <DT>void LAGRANGE(POLY P, **AA[], MPI *M): i5I.c 
  <DD><SMALL>f(x)=a[n]x<SUP>n</SUP>+···+a[0], a[n] &gt; 0, is a polynomial with 
  integer coefficients, having no rational roots and having exactly one real 
  positive root x, this being &gt; 1. The method of Lagrange (1769) is used to 
  find the the first m+1 partial quotients aa[0],···aa[m] of x. WARNING: the 
  array a[] will be changed after <TT>lagrange </TT>is called.<BR>Then a further 
  call to <TT>lagrange</TT> will produce subsequent partial quotients. (See 
  Knuth, Art of computer programming, volume 2, problem 13, 4.5.3.<BR>Also S. 
  Lang and H. Trotter,<EM>Continued fractions for some algebraic numbers</EM> J. 
  für Math. 255 (1972) 112-134; Addendum 267 (1974) ibid. 219-220.<BR>E. 
  Bombieri and A. van der Poorten, <EM>Continued fractions of algebraic 
  numbers</EM>, Computational algebra and number theory (Sydney, 1992), 137-152, 
  Math. Appl., 325, Kluwer Acad. Publ.<BR>P. Shiu, <EM>Computation of continued 
  fractions without input values</EM>, Math. Comp. 64 (1995), no. 211, 
  1307-1317.</SMALL> 
  <DT>MPI *LCM(MPI *Aptr, MPI *Bptr): i5I.c 
  <DD><SMALL>Returns lcm(Aptr,Bptr).</SMALL> 
  <DT>MPI *LCM_ARRAY(MPIA M): i5I.c 
  <DD><SMALL>Returns lcm(M[0],...,M[n - 1]).</SMALL> 
  <DT>MPI *LEASTQNR(MPI *P): qres.c 
  <DD><SMALL>Returns the least quadratic non-residue mod P.</SMALL> 
  <DT>unsigned long LENGTHI(MPI *Mptr): i5I.c 
  <DD><SMALL>Returns the number of decimal digits in the MPI Mptr<BR>increased 
  by 1 if Mptr is negative.</SMALL> 
  <DT>unsigned int LENGTHm(USL n): i5m.c 
  <DD><SMALL>Returns the number of decimal digits in the unsigned int n.</SMALL> 

  <DT>MPI *LENGTHSQRI(MPMATI *Mptr, USI i): LLL.c 
  <DD><SMALL>Returns the square of the length of row i of matrix Mptr.</SMALL> 
  <DT>MPMATI *LLLGCD(MPMATI *DD, MPI **Aptr, USI m, USI m1, USI n1): LLLGCD.c 
  <DD><SMALL>Input: an m x 1 vector of MPI's.<BR>Output: gcd of the vector of 
  DD[i]. We return a small set of<BR>multipliers using the LLL method of Havas, 
  Majewski and Matthews.<BR>matrix B of the algorithm is returned.<BR>(m1, n1) 
  is usually taken to be (3, 4) for a quick answer,<BR>but (1,1), while slower, 
  usually provides a shorter basis vectors.</SMALL> 
  <DT>void LOG(MPI *A, MPI *B, MPI *D, MPI *R, MPIA *M, MPI **L): log.c 
  <DD><SMALL>Returns an array M[] of L positive integers that are hopefully 
  partial quotients of log(A)/log(B), using C=D<SUP>R</SUP>.<BR>Here A &gt; B 
  &gt; 1, D &gt; 1, R ≥ 1.<BR>Uses an algorithm in <A 
  href="http://www.numbertheory.org/pdfs/log.pdf">manuscript</A></SMALL> 
  <DT>MPI *LPRIMROOT(MPI *P): primes1.c 
  <DD><SMALL>Returns the least primitive root mod P, an odd prime;<BR>returns 
  NULL if factorization of P - 1 is unsuccessful.</SMALL> 
  <DT>MPI *LUCAS(MPI *N) 
  <DD><SMALL>Here N is odd, N &gt; 1.<BR>If LUCAS(N) returns 1, then N is a 

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
18成人在线视频| 亚洲r级在线视频| 69堂成人精品免费视频| 色一情一伦一子一伦一区| 99久精品国产| 日本丰满少妇一区二区三区| 成人夜色视频网站在线观看| 成人国产亚洲欧美成人综合网| 国内精品免费**视频| 国产精品一区久久久久| 国产不卡视频一区| 日本伦理一区二区| 欧美日韩国产精选| 精品福利一二区| 国产精品午夜久久| 一区二区三区在线免费| 午夜国产精品一区| 国产美女视频一区| 91蜜桃免费观看视频| 91精品国产色综合久久不卡蜜臀| 久久夜色精品一区| 亚洲人成精品久久久久久| 五月天精品一区二区三区| 国产尤物一区二区在线| 91麻豆国产香蕉久久精品| 欧美三级日本三级少妇99| 日韩免费性生活视频播放| 国产日产欧美一区| 亚洲午夜三级在线| 国产一区二区三区黄视频 | 久久久无码精品亚洲日韩按摩| 久久久久高清精品| 亚洲一区二区av在线| 麻豆精品一二三| 色综合天天在线| 欧美精品一区二区三区很污很色的| 国产精品久久久久久久岛一牛影视| 亚洲午夜一二三区视频| 国产成人av网站| 欧美日韩一级二级| 中文字幕在线观看一区| 久久精品久久久精品美女| 色综合久久综合网欧美综合网| 欧美一级欧美三级在线观看 | 亚洲欧美在线观看| 日本不卡视频在线| 91一区一区三区| 久久午夜国产精品| 天天做天天摸天天爽国产一区| 成人黄色一级视频| 久久婷婷久久一区二区三区| 五月天中文字幕一区二区| zzijzzij亚洲日本少妇熟睡| 欧美一区二区美女| 亚洲国产日日夜夜| 99久久精品国产观看| 国产日韩亚洲欧美综合| 久久国内精品自在自线400部| 在线观看日韩av先锋影音电影院| 国产视频视频一区| 精品无码三级在线观看视频| 欧美三级日本三级少妇99| 亚洲精品国久久99热| 99精品视频在线免费观看| 日本一区二区三区四区在线视频| 蜜桃av一区二区在线观看| 欧美日韩免费视频| 亚洲地区一二三色| 在线免费不卡视频| 亚洲精品免费播放| 在线观看国产一区二区| 亚洲美女少妇撒尿| 色婷婷av久久久久久久| 一区二区中文视频| 91视频免费观看| 亚洲欧美日韩国产综合| av中文一区二区三区| 亚洲伦在线观看| 在线看不卡av| 水野朝阳av一区二区三区| 制服丝袜中文字幕亚洲| 日日骚欧美日韩| 日韩欧美国产综合| 国产在线看一区| 欧美激情一区三区| 99精品视频一区二区三区| 最新热久久免费视频| 色老汉一区二区三区| 一区二区三区欧美视频| 欧美日韩精品欧美日韩精品| 日韩电影在线免费看| 26uuu色噜噜精品一区二区| 国产精品自拍av| 亚洲色图清纯唯美| 欧美精品vⅰdeose4hd| 麻豆精品在线视频| 国产精品女主播av| 欧美日韩一区二区三区四区 | 成人福利视频在线| 亚洲男人的天堂一区二区| 欧美高清视频不卡网| 国产一区二区三区国产| 亚洲视频一区二区免费在线观看| 欧美图片一区二区三区| 久久99久久99| 亚洲免费在线播放| 这里只有精品视频在线观看| 国产精品66部| 亚洲成人免费在线| 国产日韩av一区| 欧美精品一二三| 国产+成+人+亚洲欧洲自线| 一区二区三区精品视频在线| 精品久久国产字幕高潮| 91在线免费播放| 久久草av在线| 亚洲午夜日本在线观看| 国产亚洲精久久久久久| 欧美精品日韩一区| av男人天堂一区| 国产资源在线一区| 亚洲不卡一区二区三区| 国产精品久久久久久久久搜平片| 91麻豆精品国产91久久久久 | 免费看欧美女人艹b| 综合久久综合久久| 久久久久久久综合色一本| 欧美精品在线观看播放| 一本色道久久综合精品竹菊| 韩国女主播一区二区三区| 天堂久久一区二区三区| 亚洲欧洲综合另类| 亚洲国产精华液网站w| 26uuu精品一区二区三区四区在线| 欧美亚洲另类激情小说| 91免费看视频| 成人午夜私人影院| 91成人国产精品| 中文字幕一区二区在线观看 | 日韩免费在线观看| 久久精品人人做| 亚洲乱码日产精品bd| 亚洲成av人片一区二区三区 | 亚洲资源在线观看| 蜜桃av一区二区在线观看 | 中文字幕一区免费在线观看| 亚洲一区二区av在线| 久久精品国产精品亚洲精品| 成人黄色电影在线| 欧美精品18+| 中文字幕精品—区二区四季| 夜夜操天天操亚洲| 激情成人午夜视频| 91成人在线观看喷潮| 久久婷婷国产综合国色天香| 亚洲卡通欧美制服中文| 久久国产乱子精品免费女| 99re这里只有精品首页| 久久婷婷国产综合国色天香 | 国内精品嫩模私拍在线| 欧洲生活片亚洲生活在线观看| 欧美一区二区三区在线观看| 国产精品久久久久久久蜜臀| 美女网站在线免费欧美精品| 91网站在线播放| 国产三级精品视频| 美女视频黄 久久| 在线观看欧美日本| 国产精品成人免费精品自在线观看 | 亚洲精品一区二区在线观看| 一区二区三区在线播| 国产麻豆精品视频| 911国产精品| 亚洲黄色小说网站| 成人sese在线| 久久久久亚洲蜜桃| 蜜臀av一区二区在线免费观看| 在线看日本不卡| 亚洲欧美色图小说| 不卡的电影网站| 久久久电影一区二区三区| 日韩电影在线观看网站| 欧美系列在线观看| 亚洲精品欧美在线| 91香蕉视频黄| |精品福利一区二区三区| 国产成人自拍高清视频在线免费播放| 欧美顶级少妇做爰| 午夜视频一区二区| 欧美日韩国产综合一区二区 | 欧美日韩免费视频| 亚洲成人av福利| 在线影视一区二区三区| 一级精品视频在线观看宜春院| 91在线看国产| 一区二区不卡在线播放| 色系网站成人免费| 一级日本不卡的影视| 欧美视频中文字幕| 偷拍日韩校园综合在线|