亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? detailed description of the major calc functions.htm

?? calc大數庫
?? HTM
?? 第 1 頁 / 共 4 頁
字號:
  strong base 2 pseudoprime<BR>and a Lucas probable prime; if it returns 0, then 
  N is composite.<BR>(See <EM>The Pseudoprimes to 
  25·10<SUP>9</SUP></EM>,<BR>Mathematics of computation, 35 (1980) 
  1003-1026.<BR>At the end of this paper it is conjectured that if N is a 
  strong<BR>base 2 pseudoprime and a Lucas probable prime, then N is in fact a 
  prime.</SMALL> 
  <DT>int MAX(int i, int j): i1.c 
  <DT>int MIN(int i, int j): i1.c 
  <DT>MPI *MAXMPI(MPI *I, MPI *J): i1.c 
  <DT>MPI *MINMPI(MPI *I, MPI *J): i1.c 
  <DT>MPI *MINUSI(MPI *Aptr): i5I.c 
  <DD><SMALL>Returns -Aptr.</SMALL> 
  <DT>MPR *MINUSI(MPR *Aptr): i5R.c 
  <DD><SMALL>Returns -Aptr.</SMALL> 
  <DT>MPI *MINUSM(MPI *Aptr, MPI *Mptr): i5m.c 
  <DD><SMALL>Returns -Aptr (mod Mptr). <BR>Here 0 ≤ Aptr &lt; Mptr.</SMALL> 
  <DT>unsigned long MINUSm(USL a, USL m): i5m.c 
  <DD><SMALL>Returns -a (mod m) if m &gt; 0.<BR>Here 0 ≤ a &lt; m &lt; 
  2<SUP>32</SUP>.</SMALL> 
  <DT>MPI *MINUS_ONEI( ): i5I.c 
  <DD><SMALL>Returns -1 as an MPI.</SMALL> 
  <DT>MPR *MINUS_ONER( ): i5R.c 
  <DD><SMALL>Returns -1 as an MPR.</SMALL> 
  <DT>MPI *MOBIUS(MPI *N): primes1.c 
  <DD><SMALL>Returns the Mobius function mu(N),<BR>returns NULL if factorization 
  unsuccessful.</SMALL> 
  <DT>MPI *MOD(MPI *Aptr, MPI *Bptr): i2.c 
  <DD><SMALL>Returns Aptr (mod Bptr), Bptr &gt; 0.</SMALL> 
  <DT>MPI *MOD0(MPI *Aptr, MPI *Bptr): i2.c 
  <DD><SMALL>Returns Aptr (mod Bptr), Aptr ≥, Bptr &gt; 0.</SMALL> 
  <DT>unsigned long MOD0_(MPI *Aptr, unsigned long b): i2.c 
  <DD><SMALL>Returns Aptr (mod b), Aptr ≥, 0 &lt; b &lt; R0.</SMALL> 
  <DT>unsigned long MOD_(MPI *Aptr, unsigned long b): i2.c 
  <DD><SMALL>Returns Aptr (mod b), 0 &lt; b &lt; R0.</SMALL> 
  <DT>unsigned long MODINT0_(MPI *Aptr, unsigned long b, MPI **Qptr): i2.c 
  <DD><SMALL>Returns Aptr (mod b) and Qptr = int(Aptr/b).<BR>Here Aptr ≥ 0, b is 
  a positive integer, b &lt; R0.</SMALL> 
  <DT>MPI *MPOWER(MPI *Aptr, MPI *Bptr, MPI *Cptr): i5m.c 
  <DD><SMALL>Returns (Aptr)<SUP>Bptr</SUP> (mod Cptr).<BR>Here Cptr &gt; 0, Bptr 
  ≥ 0.<BR>We use an analogue of the Russian Peasant Multiplication algorithm and 
  conserve the quantity w=zx<SUP>y</SUP>(mod c).<BR>Initially z=1,x=1,y=b.<BR>If 
  y is odd, y → y-1, z → z*x(mod c);<BR>if y is even, y → y/2, x → 
  x<SUP>2</SUP>(mod c).<BR>Eventually y=0. Then w=zx<SUP>0</SUP>(mod c)=z and 
  the final value of z gives a<SUP>b</SUP>(mod c). </SMALL>
  <DT>MPI *MPOWER_(long a, MPI *Bptr, MPI *Cptr) i5m.c 
  <DD><SMALL>Returns a<SUP>Bptr</SUP> (mod Cptr). <BR>Here 0 &lt; |a| &lt; R0, 
  Cptr &gt; 0, Bptr ≥ 0.</SMALL> 
  <DT>MPI *MPOWER_M(MPI *Aptr, USL b, MPI *Cptr): i5m.c 
  <DD><SMALL>Returns (Aptr)<SUP>b</SUP> (mod Cptr). <BR>Here Cptr &gt; 0, 0 ≤ b 
  &lt; RO.</SMALL> 
  <DT>void MTHROOT(MPI *Aptr, MPI *Bptr, unsigned int m, unsigned int r): i8.c 
  <DD><SMALL>Aptr and Bptr are positive MPI'S. 0 &lt; mr &lt; 
  R0<SUP>2</SUP>.<BR>The mthroot of Aptr/Bptr is computed to r decimal places, r 
  ≥ 0. </SMALL>
  <DT>MPR *MTHROOTR(MPR *Nptr, unsigned int m, unsigned int r): i8.c 
  <DD><SMALL>The m-throot of the positive MPR Nptr is computed to r decimal 
  places,<BR>m, r are integers, r ≥ 0, 0 &lt; mr &lt; R0<SUP>2</SUP>.</SMALL> 
  <DT>void MULT_PADIC(MPIA A, MPIA B, MPI *P, MPIA *PROD, USI m, USI n, USI *l): 
  p-adic.c 
  <DD><SMALL>MULT_PADIC forms the product of 
  a=a[0]+a[1]p+...+a[m]p<SUP>m</SUP><BR>and b=b[0]+b[1]p+...+b[n]p<SUP>n</SUP>, 
  where a[m] and b[n] are nonzero.<BR>The output is 
  PROD[0]+PROD[1]p+...+PROD[l]p<SUP>l</SUP>, where PROD[l] is nonzero.<BR>If a 
  or b is zero, we return 0 at the start, otherwise return l.<BR>The program is 
  an adaption of one in i1.c from http://www.numbertheory.org/calc/</SMALL> 
  <DT>MPI *MULTABC(MPI *A, MPI *B, MPI *C): i1.c 
  <DD><SMALL>Returns A + BC.</SMALL> 
  <DT>MPR *MULTABCR(MPR *A, MPR *B, MPR *C): i1.c 
  <DD><SMALL>Returns A + BC.</SMALL> 
  <DT>MPI *MULTI(MPI *Aptr, MPI *Bptr): i1.c 
  <DD><SMALL>Returns Aptr·Bptr;.</SMALL> 
  <DT>MPI *MULTR(MPR *Aptr, MPR *Bptr): i5R.c 
  <DD><SMALL>Returns Aptr·Bptr;.</SMALL> 
  <DT>MPI *MULTI3(MPI *A, MPI *B, MPI *C): i1.c 
  <DD><SMALL>Returns ABC.</SMALL> 
  <DT>MPR *MULTR3(MPR *A, MPR *B, MPR *C): cubicr.c 
  <DD><SMALL>Returns ABC.</SMALL> Here 0 ≤ Aptr, Bptr &lt; Mptr.</SMALL> 
  <DT>MPMATI *MULTMATI(MPMATI *Mptr, MPMATI *Nptr): i6I.c 
  <DD><SMALL>Returns Mptr·Bptr.</SMALL> 
  <DT>MPMATR *MULTMATR(MPMATR *Mptr, MPMATR *Nptr): i6R.c 
  <DD><SMALL>Returns Mptr·Bptr.</SMALL> 
  <DT>MPI *MULT_I(MPI *Aptr, long b): i1.c 
  <DD><SMALL>Returns Aptr·b, where |b| &lt; R0.</SMALL> 
  <DT>MPI *MULT_II(MPI *Aptr, USL b): i1.c 
  <DD><SMALL>Returns Aptr·b, where b is an USL.</SMALL> 
  <DT>MPI *MULTM(MPI *Aptr, MPI *Bptr, MPI *Mptr): i5m.c 
  <DD><SMALL>Returns Aptr·Bptr (mod Mptr).<BR></SMALL>
  <DT>unsigned long MULTm(USL a, USL b, USL m): i5m.c 
  <DD><SMALL>Returns ab (mod m) if m &gt; 0; here 0 ≤ a,b &lt; m &lt; 
  2<SUP>32</SUP>.</SMALL> 
  <DT>MPI *NEAREST_INTI(MPI *Aptr, MPI *Bptr): i5I.c 
  <DD><SMALL>Returns the nearest integer to Aptr/Bptr,<BR>choosing downwards if 
  half an odd integer.</SMALL> 
  <DT>MPI *NEAREST_INTR(MPR *Aptr): i5R.c 
  <DD><SMALL>Returns the nearest integer to Aptr,<BR>choosing downwards if half 
  an odd integer.</SMALL> 
  <DT>MPI *NEG(MPI *d, MPI *FLAG, MPI *TABLE_FLAG): reductio.c 
  <DD><SMALL>Here d &lt; 0 and 1 &lt; |d| &lt; 10<SUP>6</SUP> is squarefree and 
  d=0 or 1(mod 4).<BR>This is Henri Cohen's Algorithm 5.3.5, p. 228, for finding 
  the class number h(d) of binary quadratic forms of discriminant d, when d &lt; 
  0.<BR>If FLAG=1, we only the primitive forms.<BR>If TABLE_FLAG=0, we do not 
  print any form. This flag was introduced for TABLENEG below.<BR>h(d) is 
  returned in each case.<BR>If d is the discriminant of an imaginary quadratic 
  field K, then the primitive forms class-number h(d) is also the class number 
  of K.<BR>Davenport's <EM>Higher Arithmetic</EM> has a table of forms, which 
  lists the imprimitive ones with an asterisk.<BR></SMALL>
  <DT>MPI *NEXTPRIMEAP(MPI *A, MPI *B, MPI *M): utility.c 
  <DD><SMALL>Finds the first Lucas probable prime P, A | P - B, M ≤ P.<BR>Here A 
  is even, B is odd, A &gt; 1 , A &gt; B ≥ 1, gcd(A,B) = 1, M &gt; 1.</SMALL> 
  <DT>MPI *NEXT_PRIME(MPI *M, USI *hptr): utility.c 
  <DD><SMALL>Returns a probable prime Q with Q = M + hptr.</SMALL> 
  <DT>MPI *ONEI( ): i5I.c 
  <DD><SMALL>Returns 1.</SMALL> 
  <DT>MPR *ONER( ): i5R.c 
  <DD><SMALL>Returns 1.</SMALL> 
  <DT>unsigned int ORDERECP(MPI *X, MPI *Z, MPI *P, MPI *Q, MPI *N): elliptic.c 
  <DD><SMALL>Calculates the order of the point (X,Y,Z) on the elliptic 
  curve<BR>Y<SUP>2</SUP>Z=X<SUP>3</SUP>+PXZ<SUP>2</SUP>+QZ<SUP>3</SUP> (mod N), 
  N a prime.</SMALL> 
  <DT>MPI *ORDERM(MPI *A, MPI *M): primes1.c 
  <DD><SMALL>Returns the order of A (mod M).</SMALL> 
  <DT>MPI *ORDERP(MPI *A, MPI *P): primes1.c 
  <DD><SMALL>Returns the order of A (mod P), P a prime.</SMALL> 
  <DT>void PADICSQRT(MPI *A, USI n, MPI *P, MPIA *DIGITS): p-adic.c 
  <DD><SMALL>PADICSQRT() n &gt; 0, A &gt; 0, A a quadratic residue (mod P), 
  finds a square-root U of A (mod P), 0 &lt; U &lt; P and returns the first n 
  digits of a p-adic sqroot x of A. Here x=U (mod P). See <A 
  href="http://www.numbertheory.org/courses/MP313/lectures/lecture23/page3.html">lectures</A> 
  and <A 
  href="http://www.numbertheory.org/courses/MP313/solns/soln3/page3.html">solutions</A>. 
  </SMALL>
  <DT>void PATZ(MPI *D, MPI *N): lagrange.c 
  <DD><SMALL>Returns the fundamental solutions (x,y) (with x &gt; 0) of 
  x<SUP>2</SUP>-Dy<SUP>2</SUP>=± N, where D &gt; 1 is not a perfect square and N 
  is non-zero.<BR>The algorithm goes back to Lagrange and has been strangely 
  forgotten by textbook writers. (See the <A 
  href="http://www.numbertheory.org/pdfs/patz.pdf">preprint</A> (pdf 173K) of 
  Keith Matthews.)</SMALL> 
  <DT>MPI *PEL(MPI *D, MPI*E, MPI **Xptr, MPI **Yptr): nfunc.c 
  <DD><SMALL>This finds the least solution of Pell's equation x<SUP>2</SUP> - 
  Dy<SUP>2</SUP> = ±1.<BR>The algorithm is based on K. Rosen,<BR><EM>Elementary 
  number theory and its applications</EM>, p382,<BR>B.A. Venkov, <EM>Elementary 
  Number theory</EM>, p.62 <BR>and D. Knuth, <EM>Art of computer 
  programming</EM>, Vol.2, p359,<BR>with Pohst's trick of using half the 
  period.<BR>The partial quotients are printed iff E is nonzero.<BR>The norm of 
  the least solution is returned.</SMALL> 
  <DT>void PELL(MPI *Dptr, MPI *Eptr): nfunc.c 
  <DD><SMALL>This finds the period of the regular continued fraction<BR>of 
  square-root d, as well as the least solution x,y<BR>of the Pellian equation 
  x<SUP>2</SUP>-dy<SUP>2</SUP>=±1.<BR>The algorithm is from Sierpinski's 
  <EM>Theory of Numbers</EM>, p.296.<BR>and Davenport's <EM>The Higher 
  Arithmetic</EM>, p.109.<BR>Here 
  sqrt(d)=a[0]+1/a[1]+···+1/a[n-1]+1/2*a[0]+1/···.<BR>The partial quotients are 
  printed iff Eptr is nonzero.<BR>The length n of the period 
  a[1],···,a[n-1],2*a[0] is printed.</SMALL> 
  <DT>MPI *PERFECT_POWER(MPI *N): primes1.c 
  <DD><SMALL>If N &gt; 1, this returns X if N=X<SUP>k</SUP> for some X, k &gt; 
  1, otherwise NULL.</SMALL> 
  <DT>MPI *POLLARD(MPI *Nptr): primes1.c 
  <DD><SMALL>Pollard's p-1 method of factoring Nptr.</SMALL> 
  <DT>USI POS(MPI *d): reductio.c 
  <DD><SMALL>This returns the class number h=h(d) of a real quadratic field 
  Q(√d). Here 2 &lt; d &lt; 10<SUP>6</SUP> is squarefree and D is the field 
  discriminant. We locate all reduced irrationals of the form 
  (b+\sqrt(D))/(2|c|), where c is negative and 4*c divides d-b<SUP>2</SUP>. We 
  use the PQa continued fraction algorithm of Lagrange to break the set into 
  disjoint cycles, retaining one number from each cycle. Each reduced number 
  then gives rise to a reduced form (a,b,c) of discriminant D, where 
  a=(b<SUP>2</SUP>-D)/(4c).<BR>We are able to also determine if the Pell 
  equation x<SUP>2</SUP>-D*y<SUP>2</SUP>=-4 has a solution, thereby finding the 
  norm of the fundamental unit.<BR>(See Henri Cohen's <EM>A course in 
  computational number theory</EM>, page 260, First Edition.)<BR></SMALL>
  <DT>USI POS0(MPI *d): reductio.c 
  <DD><SMALL>We find the number of classes of binary forms of positive 
  discriminant d. Here 1 &lt; d &lt; 10<SUP>6</SUP>. Also d is not a perfect 
  square. We locate all reduced irrationals of the form (b+\sqrt(d))/(2|c|), 
  where c is negative and 4*c divides d-b<SUP>2</SUP>. We use the PQa continued 
  fraction algorithm of Lagrange to break the set into disjoint cycles, 
  retaining one number from each cycle. Each reduced number then gives rise to a 
  reduced form (a,b,c) of discriminant d, where a=(b<SUP>2</SUP>-d)/(4c). We are 
  able to also determine if the Pell equation x<SUP>2</SUP>-d*y<SUP>2</SUP>=-4 
  has a solution, by using the fact that the equation is soluble iff at least 
  one of the above cycles is odd. If there is no solution, the reduced forms 
  (-a,b,-c) have to be counted as well. (See G.B. Mathews, <EM>Theory of 
  Numbers</EM>, 80-81.)<BR>(Also see Henri Cohen's <EM>A course in computational 
  number theory</EM>, page 260, First Edition.) </SMALL>
  <DT>USI POS1(MPI *D, *norm): reductio.c 
  <DD><SMALL>D is squarefree. This function performs Lagrange's method on all 
  reduced quadratic irrationals (b+\sqrt(Disc))/2|c|, where 4*c divides 
  Disc-b<SUP>2</SUP>, Disc being the discriminant. The class-number h(D) of 
  Q(sqrt(D) is calculated, as well as the norm of the fundamental unit. For use 
  in TABLEPOS(M,N). </SMALL>
  <DT>void POWERD(MPI *A, MPI *B, MPI* D, MPI *N, MPI **AA, MPI **BB): i2.c 
  <DD><SMALL>Returns (A+B√D)<SUP>N</SUP>=AA+BB√D.</SMALL> 
  <DT>MPI *POWERI(MPI *Aptr, unsigned n): i1.c 
  <DD><SMALL>Returns (Aptr)<SUP>n</SUP>, where 0 ≤ n &lt; 
  R0<SUP>2</SUP>.</SMALL> 
  <DT>MPR *POWERR(MPR *Aptr, unsigned n): i5R.c 
  <DD><SMALL>Returns (Aptr)<SUP>n</SUP>, where 0 ≤ n &lt; 
  R0<SUP>2</SUP>.</SMALL> 
  <DT>void POWER_CUBICR(MPR *X1, MPR *Y1, MPR **Xptr, MPR **Yptr, MPR *A1, MPR 
  *A2, MPR *A3, MPR *A4, MPR *A6, unsigned int n): cubicr.c 
  <DD><SMALL>(Xptr,Yptr)= n(X1,Y1), where 0 ≤ n &lt; R0<SUP>2</SUP> and (X1, 
  Y1)<BR>is on the elliptic curve 
  y<SUP>2</SUP>+A1·xy+A3·y=X<SUP>3</SUP>+A2·X<SUP>2</SUP>+A4·x+A6.<BR>(See D. 
  Husemoller, Elliptic curves, page 25.)</SMALL> 
  <DT>MPI *POWER_I(long a, unsigned n): i1.c 
  <DD><SMALL>Returns a<SUP>n</SUP>, where 0 ≤ n &lt; R0<SUP>2</SUP>.<BR>a is an 
  integer, |a| &lt; R0.</SMALL> 
  <DT>unsigned long POWER_m(USL a, USL y, USL m): i5m.c 
  <DD><SMALL>Returns a<SUP>y</SUP> (mod m).<BR>Here 0 ≤ a &lt; m &lt; R0 and 0 ≤ 
  y.</SMALL> 
  <DT>unsigned long POWERm(USL a, MPI *Bptr, USL m): i5m.c 
  <DD><SMALL>Returns a<SUP>Bptr</SUP> (mod m).<BR>Here 0 ≤ a &lt; m &lt; R0 and 
  0 ≤ Bptr.</SMALL> 
  <DT>MPI *PRIME_GENERATOR(MPI *M, MPI *N): primes1.c 
  <DD><SMALL>Returns and prints the the c primes, (c ≥ 0), in the interval 
  [m,n], where 1 &lt; m,n &lt; 10<SUP>10</SUP>. Output is sent to 
  primes.out.</SMALL> 
  <DT>POLYI PRIMITIVEPI(POLYI Pptr): pI.c 
  <DD><SMALL>Returns the primitive part of the polynomial Pptr.</SMALL> 
  <DT>void PRINTI(MPI *Mptr): i5I.c 
  <DD><SMALL>Prints the MPI Mptr.</SMALL> 
  <DT>void PRINTR(MPR *Mptr): i5R.c 
  <DD><SMALL>Prints the MPR Mptr.</SMALL> 
  <DT>void PRINTMATI(USI i1, USI i2, USI j1, USI j2, MPMATI *Mptr): i6I.c 
  <DD><SMALL>Prints the matrix Mptr, rows i1-i2, cols j1-j2.</SMALL> 
  <DT>void PRINTMATR(USI i1, USI i2, USI j1, USI j2, MPMATR *Mptr): i5R.c 
  <DD><SMALL>Prints the matrix Mptr, rows i1-i2, cols j1-j2.</SMALL> 
  <DT>unsigned long RANDOMm(USL x): i5m.c 
  <DD><SMALL>input: seed x, output: a "random number" a x + c (mod m).<BR>a = 
  1001, m = R0 = 65536, c = 65.<BR>From H. Lüneburg, <EM>On the Rational Normal 
  Form of Endomorphisms</EM>,<BR>B.I. WissenSchaftsverlag, Mannheim/Wien/Zurich, 
  1987.<BR>See Knuth Vol 2, Theorem A, p. 16.</SMALL> 
  <DT>USL RANEY1(MPI *P, MPI *Q, MPI *R, MPI *S): davison.c 
  <DD><SMALL>Input: a non-singular matrix A=[P,Q;R,S], P,Q,R,S ≥ 0, 
  A!=I<SUB>2</SUB>, A!=[0,1;1,0].<BR>With L=[1,0;1,1] and R=[1,1;0,1], we 
  express A uniquely as a product of non-negative powers of L and R, (at least 
  one is positive) followed by a row-balanced B.<BR>B=[a,b;c,d] is row-balanced 
  if (a &lt; c &amp; b &gt; d) or (c &lt; a &amp; d &gt; b) and a,b,c ≥ 0. 
  <BR>The number k of powers of L and R is returned. The maximum number of 
  partial quotients returned is 10<SUP>6</SUP>.</SMALL> 
  <DT>MPR *RATIOI(MPI *Aptr, MPI *Bptr): i5R.c 
  <DD><SMALL>Returns Aptr/Bptr.</SMALL> 
  <DT>MPR *RATIOR(MPR *Aptr, MPR *Bptr): i5R.c 
  <DD><SMALL>Returns Aptr/Bptr.</SMALL> 
  <DT>void readme(): readme.c 
  <DD><SMALL>Contains the readme manual for CALC.</SMALL> 
  <DT>MPR *RECIPROCAL(unsigned long n): i5R.c 
  <DD><SMALL>Returns 1/n, where 0 &lt; n &lt; R0.</SMALL> 
  <DT>unsigned int REDUCE_NEG(MPI *A, MPI *B, MPI *C): reductio.c 

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
麻豆一区二区99久久久久| 高清av一区二区| 不卡影院免费观看| 这里只有精品99re| 亚洲欧美日韩国产一区二区三区| 久久9热精品视频| 欧美日本韩国一区| 国产精品久久久久久久久动漫| 久久电影网站中文字幕| 欧美日韩国产首页| 亚洲人成人一区二区在线观看| 国产精品夜夜嗨| 精品蜜桃在线看| 日韩电影在线观看网站| 日本二三区不卡| 1024成人网色www| 成人黄色综合网站| 久久夜色精品一区| 老司机免费视频一区二区三区| 8x福利精品第一导航| 亚洲bdsm女犯bdsm网站| 91久久精品日日躁夜夜躁欧美| 国产精品美女久久久久aⅴ| 国产综合久久久久久鬼色| 日韩欧美你懂的| 日本色综合中文字幕| 欧美丰满美乳xxx高潮www| 亚洲成人av电影在线| 欧美日韩一区视频| 午夜久久电影网| 欧美肥胖老妇做爰| 免费高清在线视频一区·| 91精品国产一区二区三区| 日本美女一区二区三区| 欧美一二三四区在线| 久久精品国产99国产精品| 久久无码av三级| 国产传媒久久文化传媒| 国产精品午夜在线观看| 99re在线精品| 亚洲一区中文在线| 欧美日韩成人在线| 免费高清成人在线| 国产蜜臀97一区二区三区| 99久久久久久99| 亚洲一区二区在线免费看| 欧美日韩激情一区| 麻豆精品一区二区三区| 久久久久99精品国产片| 972aa.com艺术欧美| 亚洲观看高清完整版在线观看| 欧美一级午夜免费电影| 国产久卡久卡久卡久卡视频精品| 国产精品久久久久久久久免费桃花| 日本大香伊一区二区三区| 日本成人在线网站| 久久精品亚洲精品国产欧美kt∨ | 午夜一区二区三区视频| 欧美精品成人一区二区三区四区| 久久超级碰视频| 国产精品福利影院| 欧美在线观看一区| 国产在线精品不卡| 亚洲精品视频一区二区| 日韩欧美视频在线| 一本一道波多野结衣一区二区| 蜜臀久久99精品久久久画质超高清| 国产拍欧美日韩视频二区| 欧美在线高清视频| 国产成a人无v码亚洲福利| 午夜婷婷国产麻豆精品| 国产精品无人区| 欧美一区二区三区在线观看视频| 成人在线综合网站| 日韩高清一级片| 亚洲欧洲www| 日韩精品一区二区在线| 91欧美激情一区二区三区成人| 亚洲天堂2014| 久久九九全国免费| 制服丝袜av成人在线看| 99视频超级精品| 国产丶欧美丶日本不卡视频| 日本aⅴ免费视频一区二区三区| 中文字幕不卡在线观看| 欧美一区二视频| 欧美午夜精品免费| 国产99久久久精品| 男人的天堂亚洲一区| 亚洲午夜影视影院在线观看| 中文字幕 久热精品 视频在线| 日韩一区二区三| 激情欧美一区二区三区在线观看| 日韩成人午夜电影| 国产精品免费视频观看| 精品久久五月天| 欧美三级在线看| 91网站视频在线观看| 韩国欧美一区二区| 美国av一区二区| 日韩av一区二区三区| 亚洲二区视频在线| 一区二区三区日韩欧美精品| 国产精品久久久久久久久免费樱桃| 久久蜜桃av一区二区天堂| 欧美一区二区三区视频免费| 5566中文字幕一区二区电影| 欧美天天综合网| 欧洲av在线精品| 91美女福利视频| 一本色道久久综合狠狠躁的推荐| 99精品在线免费| 99re热这里只有精品免费视频| 成人动漫一区二区三区| 大桥未久av一区二区三区中文| 福利一区二区在线| 成人黄色在线网站| www.久久精品| 色综合久久99| 欧美在线看片a免费观看| 欧美日韩一区视频| 日韩三级视频在线看| wwwwxxxxx欧美| 欧美激情一区在线| 日韩一区有码在线| 亚洲成人一二三| 蜜桃在线一区二区三区| 国产精品夜夜爽| 色综合咪咪久久| 91麻豆精品国产无毒不卡在线观看| 日韩一级大片在线观看| 26uuu久久天堂性欧美| 国产精品麻豆欧美日韩ww| 亚洲女厕所小便bbb| 天天影视色香欲综合网老头| 精品一区二区三区欧美| 国产麻豆成人精品| 99免费精品视频| 8v天堂国产在线一区二区| 久久精品无码一区二区三区| 成人免费在线视频| 日韩黄色小视频| 国产99久久久久| 欧美日韩在线播放三区四区| 久久天天做天天爱综合色| 中文字幕一区二区三区av| 视频一区在线视频| 国产精品一区二区在线播放| 色婷婷综合久久久| 欧美成人免费网站| 中文字幕综合网| 久久狠狠亚洲综合| 91视频免费观看| 26uuu精品一区二区在线观看| 亚洲人123区| 久久草av在线| 在线观看网站黄不卡| 精品福利一二区| 亚洲国产综合色| 成人免费高清在线观看| 91精品啪在线观看国产60岁| 亚洲国产成人一区二区三区| 免费日本视频一区| 91天堂素人约啪| 久久你懂得1024| 亚洲成av人片观看| 91视频精品在这里| 国产日韩欧美综合一区| 日韩电影网1区2区| 一本大道综合伊人精品热热| 久久久久久久久久久久久夜| 日韩中文字幕1| 欧美制服丝袜第一页| 国产精品久久久久一区二区三区共| 久久精品99久久久| 欧美人伦禁忌dvd放荡欲情| 中文字幕一区不卡| 国产福利一区在线| 精品入口麻豆88视频| 首页亚洲欧美制服丝腿| 日本高清不卡在线观看| 亚洲欧洲一区二区在线播放| 国产精品一区二区黑丝| 欧美一区二区三区播放老司机| 亚洲综合在线第一页| 白白色 亚洲乱淫| 日本一区二区三区dvd视频在线| 狠狠网亚洲精品| 欧美不卡一区二区三区| 欧美a级理论片| 91精品国产入口在线| 视频在线观看一区| 欧美精品xxxxbbbb| 三级亚洲高清视频| 欧美精品久久99| 婷婷综合另类小说色区| 欧美日韩美少妇| 五月天国产精品| 日韩一区二区在线观看视频| 日韩国产精品91|