亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? demev1.m

?? 神經網絡的經典代碼
?? M
字號:
%DEMEV1	Demonstrate Bayesian regression for the MLP.%%	Description%	The problem consists an input variable X which sampled from a%	Gaussian distribution, and a target variable T generated by computing%	SIN(2*PI*X) and adding Gaussian noise. A 2-layer network with linear%	outputs is trained by minimizing a sum-of-squares error function with%	isotropic Gaussian regularizer, using the scaled conjugate gradient%	optimizer. The hyperparameters ALPHA and BETA are re-estimated using%	the function EVIDENCE. A graph  is plotted of the original function,%	the training data, the trained network function, and the error bars.%%	See also%	EVIDENCE, MLP, SCG, DEMARD, DEMMLP1%%	Copyright (c) Ian T Nabney (1996-2001)clc;disp('This demonstration illustrates the application of Bayesian')disp('re-estimation to determine the hyperparameters in a simple regression')disp('problem. It is based on a local quadratic approximation to a mode of')disp('the posterior distribution and the evidence maximization framework of')disp('MacKay.')disp(' ')disp('First, we generate a synthetic data set consisting of a single input')disp('variable x sampled from a Gaussian distribution, and a target variable')disp('t obtained by evaluating sin(2*pi*x) and adding Gaussian noise.')disp(' ')disp('Press any key to see a plot of the data together with the sine function.')pause;% Generate the matrix of inputs x and targets t.ndata = 16;			% Number of data points.noise = 0.1;			% Standard deviation of noise distribution.randn('state', 0);x = 0.25 + 0.07*randn(ndata, 1);t = sin(2*pi*x) + noise*randn(size(x));% Plot the data and the original sine function.h = figure;nplot = 200;plotvals = linspace(0, 1, nplot)';plot(x, t, 'ok')xlabel('Input')ylabel('Target')hold onaxis([0 1 -1.5 1.5])fplot('sin(2*pi*x)', [0 1], '-g')legend('data', 'function');disp(' ')disp('Press any key to continue')pause; clc;disp('Next we create a two-layer MLP network having 3 hidden units and one')disp('linear output. The model assumes Gaussian target noise governed by an')disp('inverse variance hyperparmeter beta, and uses a simple Gaussian prior')disp('distribution governed by an inverse variance hyperparameter alpha.')disp(' ');disp('The network weights and the hyperparameters are initialised and then')disp('the weights are optimized with the scaled conjugate gradient')disp('algorithm using the SCG function, with the hyperparameters kept')disp('fixed. After a maximum of 500 iterations, the hyperparameters are')disp('re-estimated using the EVIDENCE function. The process of optimizing')disp('the weights with fixed hyperparameters and then re-estimating the')disp('hyperparameters is repeated for a total of 3 cycles.')disp(' ')disp('Press any key to train the network and determine the hyperparameters.')pause;% Set up network parameters.nin = 1;		% Number of inputs.nhidden = 3;		% Number of hidden units.nout = 1;		% Number of outputs.alpha = 0.01;		% Initial prior hyperparameter. beta_init = 50.0;	% Initial noise hyperparameter.% Create and initialize network weight vector.net = mlp(nin, nhidden, nout, 'linear', alpha, beta_init);% Set up vector of options for the optimiser.nouter = 3;			% Number of outer loops.ninner = 1;			% Number of innter loops.options = zeros(1,18);		% Default options vector.options(1) = 1;			% This provides display of error values.options(2) = 1.0e-7;		% Absolute precision for weights.options(3) = 1.0e-7;		% Precision for objective function.options(14) = 500;		% Number of training cycles in inner loop. % Train using scaled conjugate gradients, re-estimating alpha and beta.for k = 1:nouter  net = netopt(net, options, x, t, 'scg');  [net, gamma] = evidence(net, x, t, ninner);  fprintf(1, '\nRe-estimation cycle %d:\n', k);  fprintf(1, '  alpha =  %8.5f\n', net.alpha);  fprintf(1, '  beta  =  %8.5f\n', net.beta);  fprintf(1, '  gamma =  %8.5f\n\n', gamma);  disp(' ')  disp('Press any key to continue.')  pause;endfprintf(1, 'true beta: %f\n', 1/(noise*noise));disp(' ')disp('Network training and hyperparameter re-estimation are now complete.') disp('Compare the final value for the hyperparameter beta with the true') disp('value.')disp(' ')disp('Notice that the final error value is close to the number of data')disp(['points (', num2str(ndata),') divided by two.'])disp(' ')disp('Press any key to continue.')pause; clc;disp('We can now plot the function represented by the trained network. This')disp('corresponds to the mean of the predictive distribution. We can also')disp('plot ''error bars'' representing one standard deviation of the')disp('predictive distribution around the mean.')disp(' ')disp('Press any key to add the network function and error bars to the plot.')pause;% Evaluate error bars.[y, sig2] = netevfwd(mlppak(net), net, x, t, plotvals);sig = sqrt(sig2);% Plot the data, the original function, and the trained network function.[y, z] = mlpfwd(net, plotvals);figure(h); hold on;plot(plotvals, y, '-r')xlabel('Input')ylabel('Target')plot(plotvals, y + sig, '-b');plot(plotvals, y - sig, '-b');legend('data', 'function', 'network', 'error bars');disp(' ')disp('Notice how the confidence interval spanned by the ''error bars'' is')disp('smaller in the region of input space where the data density is high,')disp('and becomes larger in regions away from the data.')disp(' ')disp('Press any key to end.')pause; clc; close(h); %clear all

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产精品嫩草影院com| 国产精品污污网站在线观看| www.色综合.com| 粉嫩绯色av一区二区在线观看| 午夜久久久影院| 亚洲欧美日韩精品久久久久| 18欧美亚洲精品| 中文av一区特黄| 中文字幕免费在线观看视频一区| 亚洲精品一区二区三区福利| 久久亚洲一级片| 日韩免费福利电影在线观看| 日韩欧美色综合| 欧美精品一区男女天堂| 国产亚洲一二三区| 久久久www免费人成精品| 国产欧美日韩不卡免费| 国产精品成人一区二区三区夜夜夜 | 亚洲午夜久久久久久久久久久 | 91福利在线看| 色呦呦一区二区三区| 欧美亚洲一区二区在线观看| 欧美日韩国产综合久久| 日韩三级免费观看| 欧美激情资源网| 伊人色综合久久天天| 午夜影院久久久| 国产一区二区中文字幕| www.日韩大片| 欧美一级一区二区| 国产亚洲一区二区三区四区| 亚洲激情图片小说视频| 青青草97国产精品免费观看 | 亚洲黄色小视频| 日韩高清在线一区| 国产a区久久久| 精品视频在线视频| 精品对白一区国产伦| 亚洲欧美另类综合偷拍| 久久国产欧美日韩精品| 一本大道av一区二区在线播放| 欧美肥大bbwbbw高潮| 久久久99久久| 亚洲第一成人在线| 99精品一区二区三区| 7777女厕盗摄久久久| 国产精品美女久久久久av爽李琼 | 国产福利一区二区三区视频| 欧美又粗又大又爽| 日本一区二区三区视频视频| 日韩高清不卡一区二区三区| 91在线视频官网| 久久久精品国产免大香伊| 亚洲bt欧美bt精品| 色综合天天综合网天天看片| 精品区一区二区| 亚洲电影在线免费观看| 91性感美女视频| 欧美国产日韩在线观看| 精品在线亚洲视频| 欧美肥妇毛茸茸| 一区二区三区精品在线观看| av成人免费在线| 久久久精品tv| 亚洲精品一二三四区| 欧美日韩亚洲另类| 国产精品久久午夜夜伦鲁鲁| 国产在线精品一区二区不卡了| 欧美日韩在线三级| 亚洲欧洲综合另类| 一本到不卡免费一区二区| 18成人在线视频| 成人动漫视频在线| 国产精品入口麻豆九色| 国产一区二区精品久久99| 欧美精品一区二区久久久| 天涯成人国产亚洲精品一区av| 欧美午夜一区二区三区免费大片| 亚洲欧美视频一区| 欧美在线不卡视频| 五月激情综合色| 久久精品一区八戒影视| 久久精品国产一区二区三区免费看 | 亚洲人成亚洲人成在线观看图片| 99久久精品免费看| 亚洲欧美日韩小说| 欧美日韩精品一区二区三区四区| 亚洲成年人影院| 5858s免费视频成人| 欧美aaaaa成人免费观看视频| 日韩欧美的一区| 国产专区欧美精品| 国产精品久久精品日日| 91片黄在线观看| 性感美女久久精品| 亚洲精品在线电影| av亚洲精华国产精华| 一区二区在线免费| 欧美大片在线观看一区| 国产福利一区二区| 亚洲精品成人在线| 日韩一级片网址| 成人黄色小视频| 亚洲夂夂婷婷色拍ww47| 日韩视频一区二区三区| 丁香网亚洲国际| 亚洲第一主播视频| 日本一区二区三区国色天香| 91九色02白丝porn| 久久99九九99精品| 成人欧美一区二区三区| 欧美美女直播网站| 国产成a人亚洲| 污片在线观看一区二区| 久久精品一级爱片| 欧美日韩久久一区二区| 国产精品自拍网站| 亚洲成av人**亚洲成av**| 国产午夜久久久久| 欧美精品久久久久久久久老牛影院| 国产美女精品一区二区三区| 亚洲免费大片在线观看| 精品伦理精品一区| 欧美高清你懂得| 99久久国产综合精品色伊| 捆绑调教一区二区三区| 亚洲综合在线第一页| 久久久久久电影| 欧美一级二级在线观看| 在线看国产一区| 成人免费视频一区| 精品一区二区在线视频| 亚洲国产视频直播| 亚洲三级免费观看| 国产欧美久久久精品影院| 日韩一区二区不卡| 欧美午夜不卡视频| 色偷偷久久一区二区三区| 国产精品白丝jk白祙喷水网站 | 欧美精品一区二区三区在线播放| 欧美视频一区二区三区四区| 93久久精品日日躁夜夜躁欧美| 国产一区在线不卡| 精品一区二区三区免费| 日欧美一区二区| 五月天欧美精品| 亚洲福利一二三区| 亚洲国产毛片aaaaa无费看| 亚洲免费电影在线| 亚洲精品日韩专区silk| 亚洲欧洲国产日本综合| 国产丝袜欧美中文另类| 国产日韩欧美精品电影三级在线| 日韩欧美一级二级| 精品少妇一区二区三区免费观看| 欧美一区二区精品久久911| 欧美日韩免费观看一区二区三区| 91久久精品网| 欧美日本国产一区| 欧美老肥妇做.爰bbww| 欧美日韩精品欧美日韩精品一 | 91一区在线观看| 91小视频免费观看| 色哟哟亚洲精品| 欧美亚洲国产一区二区三区| 欧美三级中文字| 日韩欧美的一区| 欧美激情艳妇裸体舞| 亚洲人快播电影网| 午夜激情综合网| 九九久久精品视频| 国产成人精品www牛牛影视| av一区二区三区四区| 91行情网站电视在线观看高清版| 欧美美女一区二区| 精品国产一区二区在线观看| 欧美韩国日本一区| 亚洲综合免费观看高清完整版 | 国产免费观看久久| 亚洲另类春色校园小说| 五月婷婷综合激情| 国内偷窥港台综合视频在线播放| av亚洲精华国产精华| 欧美日韩国产成人在线免费| 精品欧美乱码久久久久久1区2区 | 亚洲一区二区三区三| 麻豆精品视频在线观看视频| 大桥未久av一区二区三区中文| 91国偷自产一区二区开放时间| 91精品国产综合久久婷婷香蕉 | 丁香一区二区三区| 欧美三区在线观看| 国产欧美日韩不卡免费| 亚洲韩国精品一区| 高清不卡在线观看| 欧美高清视频不卡网| 中文字幕亚洲电影| 久久99国产精品尤物| 欧洲日韩一区二区三区| 国产午夜精品久久久久久久|