亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? traindatasql語句.txt

?? 基于決策樹和貝葉斯的預測分析器
?? TXT
字號:
        /* 1、 ageType分6類:<=20為year0_20,21-30為year21_30,31-40為year31_40,41-50為year41_50,51-60為year51_60,>=61為yearover60
        
           2、  原有education_numType: 1-16  ,分成6級:   edu1_3,edu4_6,edu7_9,edu10_12,edu13_14,edu15_16
        
           3、 occupationType共14類:Tech_support, Craft_repair, Other_service(?), Sales, Exec_managerial, Prof_specialty,
                   Handlers_cleaners, Machine_op_inspct, Adm_clerical, Farming_fishing, Transport_moving, 
                   Priv_house_serv, Protective_serv, Armed_Forces
  
           4 、原有native-countryType:United-States, Cambodia, England, Puerto-Rico, Canada, Germany, 
          Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, 
          Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, 
          Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, 
          Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holand-Netherlands}
               native_country分成5類developNO1,developNO2,developNO3,developNO4,developNO5后:
         developNO1:(<0.1)       Outlying-US(Guam-USVI-etc),Vietnam,Mexico,Dominican-Republic,Laos,Haiti,Hungary,
				Guatemala,Nicaragua,Scotland,El-Salvador,Trinadad&Tobago,Holand-Netherlands	
											
         developNO2:(>=0.1 <0.2)  Puerto-Rico,South,China,Cuba,Poland,Jamaica,Portugal,Ireland,Ecuador,Peru,?

         developNO3:(>=0.2 <0.3)  Honduras,France,Columbia,United-States,England,Germany,Greece,Philippines,Thailand,                                  Yugoslavia
         developNO4:(>=0.3 <0.4)  India.Japan.
         developNO5:(>=0.4 )      Cambodia,Canada,Iran,Italy,Taiwan,Hong      
        
平均:0.2375  
計算方法:
SELECT COUNT(*) 
FROM traindata1
WHERE native_country = ' ?'

SELECT COUNT(*)
FROM traindata1
WHERE native_country = ' ?' AND makeover = ' >50K'
      
具體數值:
Outlying-US(Guam-USVI-etc):0 Vietnam:0.08 Mexico:0.064 Dominican-Republic:0.083 Laos:0 Haiti:0.067 Hungary:0
Guatemala:0.048 Nicaragua:0 Scotland:0 El-Salvador:0.097 Trinadad&Tobago:0 Holand-Netherlands:0

Puerto-Rico:0.1395 South:0.1  China:0.1613 Cuba:0.1516  Poland:0.1739 Jamaica:0.1875 Portugal:0.1667
Ireland:0.125  Ecuador:0.125  Peru:0.1111  ?:0.1111


Honduras:0.2 France:0.2 Columbia:0.2 United-States:0.2418 England:0.2812 Germany:0.2653  Greece:0.2222 Philippines:0.2632 Thailand:0.25 Yugoslavia:0.25

India:0.3 Japan:0.3 
Cambodia:0.4285 Canada:0.404 Iran:0.4783  Italy:0.4545 Taiwan:0.4211 Hong:0.5
         5、sexType分為Male、Female兩類
*/




      

CREATE DATABASE adult_data
ON
( 
	NAME=adult_data,
    FILENAME='adult_data.mdf')


CREATE TABLE traindata1
(

	age      INT,
	workclass VARCHAR(30),
	fnlwgt   INT,
	education VARCHAR(20),
	education_num INT,
	marital_status VARCHAR(30),
	occupation  VARCHAR(30),
	relationship VARCHAR(30),
	race VARCHAR(20),
	sex VARCHAR(10),
	capital_gain INT,
	capital_loss INT,
	hours_per_week INT,
	native_country  VARCHAR(30),
	makeover VARCHAR (10)
)


BULK INSERT traindata1
FROM 'adult.data.txt'
WITH
(
	FIELDTERMINATOR = ',',
	ROWTERMINATOR = '\n'
)


CREATE TABLE traindata2
(

	age      INT,
	workclass VARCHAR(30),
	fnlwgt   INT,
	education VARCHAR(20),
	education_num INT,
	marital_status VARCHAR(30),
	occupation  VARCHAR(30),
	relationship VARCHAR(30),
	race VARCHAR(20),
	sex VARCHAR(10),
	capital_gain INT,
	capital_loss INT,
	hours_per_week INT,
	native_country  VARCHAR(30),
	makeover50k VARCHAR (10)
)


BULK INSERT traindata2
FROM 'adult.data.txt'
WITH
(
	FIELDTERMINATOR = ',',
	ROWTERMINATOR = '\n'
)

ALTER TABLE traindata2 DROP COLUMN workclass
ALTER TABLE traindata2 DROP COLUMN fnlwgt
ALTER TABLE traindata2 DROP COLUMN marital_status
ALTER TABLE traindata2 DROP COLUMN relationship
ALTER TABLE traindata2 DROP COLUMN race
ALTER TABLE traindata2 DROP COLUMN capital_gain
ALTER TABLE traindata2 DROP COLUMN capital_loss
ALTER TABLE traindata2 DROP COLUMN hours_per_week

//ageType分6類:<=20為year0_20,21-30為year21_30,31-40為year31_40,41-50為year41_50,51-60為year51_60,>=61為yearover60

UPDATE traindata2
SET age=0
WHERE age<=20

UPDATE traindata2
SET age=1
WHERE age>20 AND age<=30

UPDATE traindata2
SET age=2
WHERE age>30 AND age<=40

UPDATE traindata2
SET age=3
WHERE age>40 AND age<=50

UPDATE traindata2
SET age=4
WHERE age>50 AND age<=60

UPDATE traindata2
SET age=5
WHERE age>60 

ALTER TABLE traindata2 ALTER COLUMN age VARCHAR(15)

UPDATE traindata2
SET age = 'year0_20'
WHERE age = '0'

UPDATE traindata2
SET age= 'year21_30'
WHERE age = '1'

UPDATE traindata2
SET age = 'year31_40'
WHERE age = '2'

UPDATE traindata2
SET age = 'year31_40'
WHERE age = '3'

UPDATE traindata2
SET age = 'year41_50'
WHERE age = '4'

UPDATE traindata2
SET age = 'yearover60'
WHERE age = '5'

//原有education_numType: 1-16  ,分成6級:   edu1_3,edu4_6,edu7_9,edu10_12,edu13_14,edu15_16

UPDATE traindata2
SET education = 'edu1_3'
WHERE education_num >= 0 AND  education_num <= 3

UPDATE traindata2
SET education = 'edu4_6'
WHERE education_num >= 4 AND  education_num <= 6

UPDATE traindata2
SET education = 'edu7_9'
WHERE education_num >= 7 AND  education_num <= 9

UPDATE traindata2
SET education = 'edu10_12'
WHERE education_num >= 10 AND  education_num <= 12

UPDATE traindata2
SET education = 'edu13_14'
WHERE education_num >= 13 AND  education_num <= 14

UPDATE traindata2
SET education = 'edu15_16'
WHERE education_num >= 15 AND  education_num <= 16

ALTER TABLE traindata2 DROP COLUMN education_num


//occupationType共14類:Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty,
//                   Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving, 
//                 Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving
//                   Priv-house-serv, Protective-serv, Armed-Forces
//occupationType共14類(將原"-"改為"_"便于編程處理,并去掉前面的空格):Tech_support, Craft_repair, Other_service, Sales, //Exec_managerial, Prof_specialty, Handlers_cleaners, Machine_op_inspct, Adm_clerical, Farming_fishing, Transport_moving, 
//Priv_house_serv, Protective_serv, Armed_Forces

UPDATE traindata2
SET occupation = 'Tech_support'
WHERE occupation =' Tech-support' 

UPDATE traindata2
SET occupation = 'Craft_repair'
WHERE occupation =' Craft-repair' 

UPDATE traindata2
SET occupation = 'Other_service'
WHERE occupation =' Other-service' 

UPDATE traindata2
SET occupation = 'Exec_managerial'
WHERE occupation =' Exec-managerial' 

UPDATE traindata2
SET occupation = 'Prof_specialty'
WHERE occupation =' Prof-specialty' 

UPDATE traindata2
SET occupation = 'Handlers_cleaners'
WHERE occupation =' Handlers-cleaners' 

UPDATE traindata2
SET occupation = 'Machine_op_inspct'
WHERE occupation =' Machine-op-inspct' 

UPDATE traindata2
SET occupation = 'Adm_clerical'
WHERE occupation =' Adm-clerical' 

UPDATE traindata2
SET occupation = 'Farming_fishing'
WHERE occupation =' Farming-fishing' 
UPDATE traindata2
SET occupation = 'Transport_moving'
WHERE occupation =' Transport-moving' 

UPDATE traindata2
SET occupation = 'Priv_house_serv'
WHERE occupation =' Priv-house-serv' 

UPDATE traindata2
SET occupation = 'Protective_serv'
WHERE occupation =' Protective-serv' 

UPDATE traindata2
SET occupation = 'Armed_Forces'
WHERE occupation =' Armed-Forces' 

UPDATE traindata2
SET occupation = 'Other_service'
WHERE occupation =' ?'

/*原有native-countryType:United-States, Cambodia, England, Puerto-Rico, Canada, Germany, 
          Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, 
          Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, 
          Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, 
          Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holand-Netherlands}
               native_country分成5類developNO1,developNO2,developNO3,developNO4,developNO5后:
         developNO1:(<0.1)       Outlying-US(Guam-USVI-etc),Vietnam,Mexico,Dominican-Republic,Laos,Haiti,Hungary,
				Guatemala,Nicaragua,Scotland,El-Salvador,Trinadad&Tobago,Holand-Netherlands	
											
         developNO2:(>=0.1 <0.2)  Puerto-Rico,South,China,Cuba,Poland,Jamaica,Portugal,Ireland,Ecuador,Peru,?

         developNO3:(>=0.2 <0.3)  Honduras,France,Columbia,United-States,England,Germany,Greece,Philippines,Thailand,                                  Yugoslavia
         developNO4:(>=0.3 <0.4)  India.Japan.
         developNO5:(>=0.4 )      Cambodia,Canada,Iran,Italy,Taiwan,Hong 

*/
UPDATE traindata2
SET native_country = 'developNO1'
WHERE native_country = ' Outlying-US(Guam-USVI-etc)' OR native_country = ' Vietnam' 
   OR native_country = ' Mexico' OR native_country = ' Dominican-Republic' 
   OR native_country = ' Laos' OR native_country = ' Haiti' 
   OR native_country = ' Hungary' OR native_country = ' Guatemala' 
   OR native_country = ' Nicaragua' OR native_country = ' Scotland' 
   OR native_country = ' El-Salvador' OR native_country = ' Trinadad&Tobago' 
   OR native_country = ' Holand-Netherlands'

UPDATE traindata2
SET native_country = 'developNO2'
WHERE native_country = ' Puerto-Rico' OR native_country = ' South' 
   OR native_country = ' China' OR native_country = ' Cuba' 
   OR native_country = ' Poland' OR native_country = ' Jamaica' 
   OR native_country = ' Portugal' OR native_country = ' Ireland' 
   OR native_country = ' Ecuador' OR native_country = ' Peru' 
   OR native_country = ' ?' 

UPDATE traindata2
SET native_country = 'developNO3'
WHERE native_country = ' Honduras' OR native_country = ' France' 
   OR native_country = ' Columbia' OR native_country = ' United-States' 
   OR native_country = ' England' OR native_country = ' Germany' 
   OR native_country = ' Greece' OR native_country = ' Philippines' 
   OR native_country = ' Thailand' OR native_country = ' Yugoslavia' 
        UPDATE traindata2
SET native_country = 'developNO4'
WHERE native_country = ' India' OR native_country = ' Japan'

UPDATE traindata2
SET native_country = 'developNO5'
WHERE native_country = ' Cambodia' OR native_country = ' Canada' 
   OR native_country = ' Iran' OR native_country = ' Italy' 
   OR native_country = ' Taiwan' OR native_country = ' Hong'                           




UPDATE traindata2
SET makeover50k = 'yes'
WHERE makeover50k = ' >50K'

UPDATE traindata2
SET makeover50k = 'no'
WHERE makeover50k = ' <=50K'



SELECT *
FROM traindata2

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
久久免费电影网| 欧美色中文字幕| 国产欧美一区二区三区沐欲| 国产精品1区2区3区| 欧美激情在线观看视频免费| 99精品国产91久久久久久| 亚洲精品视频在线观看网站| 欧美在线|欧美| 日韩精品一二三四| 欧美精品一区男女天堂| 99久久免费精品高清特色大片| 日韩一区在线免费观看| 欧美日韩国产成人在线91| 久久成人久久爱| 综合激情网...| 欧美精品高清视频| 福利一区福利二区| 亚洲一级二级三级| 精品国产精品网麻豆系列| 成人动漫视频在线| 日本亚洲电影天堂| 欧美国产日产图区| 欧美精品v国产精品v日韩精品 | 一区二区三区不卡视频| 欧美日韩一区高清| 国产一区二区视频在线播放| 亚洲色图欧美偷拍| 精品第一国产综合精品aⅴ| 99久久夜色精品国产网站| 图片区小说区区亚洲影院| 国产亚洲欧美中文| 欧美日韩国产大片| 99热国产精品| 国产最新精品精品你懂的| 亚洲一区二区三区四区五区黄| 国产无遮挡一区二区三区毛片日本| 欧洲日韩一区二区三区| 国产成人免费高清| 青青国产91久久久久久| 一区二区在线观看免费视频播放| 久久九九99视频| 日韩一区二区在线观看| 日本久久一区二区| 丰满白嫩尤物一区二区| 男人的天堂亚洲一区| 亚洲一区二区三区精品在线| 国产精品国产三级国产aⅴ入口| 日韩一级二级三级精品视频| 欧美在线一区二区三区| 国产+成+人+亚洲欧洲自线| 美国十次了思思久久精品导航| 一区二区三区四区激情 | 精品国产1区二区| 欧美日韩一级视频| 色婷婷综合五月| 不卡的av中国片| 高清不卡在线观看| 国产乱淫av一区二区三区| 喷白浆一区二区| 日韩影院精彩在线| 丝袜诱惑亚洲看片| 性感美女久久精品| 亚洲国产精品天堂| 亚洲国产精品自拍| 午夜久久久影院| 亚洲高清三级视频| 爽好多水快深点欧美视频| 亚洲一区二区在线观看视频| 亚洲男帅同性gay1069| 亚洲欧美在线视频观看| 亚洲丝袜美腿综合| 一区二区三区中文字幕| 亚洲欧美区自拍先锋| 成人欧美一区二区三区视频网页| 久久久久久久久97黄色工厂| 久久久国产精品麻豆| 国产亚洲欧美色| 国产欧美综合色| 亚洲欧美一区二区在线观看| 亚洲欧美视频在线观看| 亚洲综合免费观看高清在线观看| 亚洲一二三四区不卡| 天天综合天天综合色| 蜜桃精品视频在线| 国产成人亚洲精品青草天美| 成人国产精品免费| 色综合色狠狠天天综合色| 91久久人澡人人添人人爽欧美| 欧美网站一区二区| 日韩视频免费观看高清完整版在线观看 | 欧美日本在线播放| 欧美一区二区三区视频免费播放| 日韩午夜电影av| 国产日韩高清在线| 一区二区三区日本| 老司机精品视频线观看86| 国产一区二区三区免费观看| 成人午夜视频在线观看| 日本韩国精品一区二区在线观看| 欧美日韩大陆一区二区| 欧美成人三级在线| ...中文天堂在线一区| 亚洲永久免费视频| 精品一二三四在线| 成人av免费在线播放| 欧美日韩午夜在线视频| 久久久久国产精品厨房| 一区二区在线观看免费视频播放| 美国av一区二区| 成人免费视频播放| 欧美一区二区成人| 中文字幕亚洲成人| 蜜桃精品在线观看| 91在线视频在线| 精品久久人人做人人爰| 亚洲另类在线一区| 国产精品99久久久久久久vr| 欧美优质美女网站| 久久色成人在线| 婷婷开心激情综合| 99久久精品国产精品久久| 欧美一区二区三区免费大片| 日韩久久一区二区| 国产一区二区三区四区五区入口| 精品少妇一区二区三区视频免付费 | 91免费在线视频观看| 91精品在线观看入口| 综合久久一区二区三区| 麻豆成人免费电影| 在线精品视频一区二区| 国产三级一区二区三区| 日韩中文字幕1| 色94色欧美sute亚洲线路一ni | 麻豆久久一区二区| 在线看不卡av| 中文字幕一区不卡| 国产剧情一区二区三区| 日韩一区二区三区免费看| 亚洲精品高清在线观看| 成人的网站免费观看| 精品免费99久久| 日韩成人一区二区三区在线观看| 日本韩国欧美一区二区三区| 国产精品久久久久久久久图文区 | 欧美蜜桃一区二区三区| 亚洲欧美视频在线观看| eeuss鲁片一区二区三区| 日韩免费高清视频| 日韩和欧美一区二区| 欧美三日本三级三级在线播放| 国产精品久久久久久久久免费桃花 | 国产麻豆欧美日韩一区| 欧美一区二区成人| 免费成人你懂的| 在线播放中文字幕一区| 亚洲一区二区三区四区五区中文 | 91精品国产丝袜白色高跟鞋| 亚洲五月六月丁香激情| 一本色道久久加勒比精品 | 日韩一区和二区| 日本vs亚洲vs韩国一区三区二区| 欧美色图第一页| 国产99久久久国产精品潘金网站| 精品99一区二区| 国产自产视频一区二区三区| 久久亚洲二区三区| 国产一区二区在线视频| 久久久久久夜精品精品免费| 国产精品 日产精品 欧美精品| 国产欧美一区二区在线观看| 成人国产精品免费| 亚洲精选免费视频| 色先锋久久av资源部| 亚洲第一二三四区| 日韩无一区二区| 国产不卡高清在线观看视频| 国产精品乱码人人做人人爱 | 亚欧色一区w666天堂| 欧美日韩视频专区在线播放| 日韩av网站在线观看| 亚洲精品在线观| 丁香婷婷综合色啪| **欧美大码日韩| 欧美视频中文字幕| 麻豆91在线播放免费| 国产午夜精品福利| 日本电影欧美片| 美女视频网站久久| 欧美激情一区二区三区| 色悠悠久久综合| 看电影不卡的网站| 国产网站一区二区三区| 在线观看视频一区二区| 欧美aⅴ一区二区三区视频| 国产午夜亚洲精品理论片色戒| 91网站视频在线观看| 日韩高清在线一区| 中文字幕第一页久久| 欧美午夜理伦三级在线观看| 精品在线一区二区|