?? hzh_nn_ar_emd.m
字號(hào):
close all
%---------- Generate training and test set ----------
%clear all
clc
load sunspot2003;
org_data=scale(sunspot2003,0,1); % load the normalised originate data sunspots
%%%% -------------------*******------------------
load emd_sunspot
x=imf(7,:);
[x,xmin,xmax]=scale(x,0,1);
plot(x);
xlabel('Year');
ylabel('Sunspot activity');
title('Sunspot benchmark data');
%=====================------------------------------
nlag=3;
[x0,train,test]=tsgenf_hzh(x,304,244,1,nlag);
%------------******-----------------
% W1 : Input-to-hidden layer weights. The matrix dimension is
% dim(W1) = [(# of hidden units) * (inputs + 1)] (the 1 is due to the bias)
% W2 : hidden-to-output layer weights.
% dim(W2) = [(outputs) * (# of hidden units + 1)]
rand('seed',0);
W1 = rand(8,nlag+1)-0.5; % Weights to hidden layer 權(quán)值加減-0。5 +0。5有助于預(yù)測的準(zhǔn)確性
W2 = rand(1,9)-0.5; % Weights to output
NetDef = ['HHHHHHHH'
'L-------'];
maxiter = 1000;
stop_crit = 1e-12;
lambda=1;
D=1;%加動(dòng)量項(xiàng)有助于快速收斂
trparms=[maxiter stop_crit lambda D];
[W1,W2,PI_vector,iter,lambda]=marq(NetDef,W1,W2,train(:,1:nlag)',train(:,nlag+1)',trparms);
% ----------- Validate Network -----------
[Y_sim,E,PI] = nneval(NetDef,W1,W2,train(:,1:nlag)',train(:,nlag+1)');
[Y_sim1,E,PI,tr,E1,PI1] = nneval_hzh(NetDef,W1,W2,test(:,1:nlag)',test(:,nlag+1)');
% ----------- Plot Cost function -----------
figure
semilogy(PI_vector)
title('Criterion evaluated after each iteration')
xlabel('Iteration (epoch)')
ylabel('Criterion')
grid
sum(E.*E)/length(test)
sum(E1.*E1)/length(test)
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -