亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? demo_rbf_fs_2.m

?? RBF算法matlab工具箱,里面有詳細的說明文檔.
?? M
字號:
function [mydemo, cleanup] = demo_rbf_fs_2%% Demo of regularised forward selection of RBFs.%% Initialise number of chunks in mydemo.n = 0;n = n + 1;mydemo(n) = struct( ...  'comments', {{              'This is the demo for the rbf_fs_2 method.', ...              '-----------------------------------------', ...              '', ...              'rbf_fs_2 is an algorithm for regression and classification', ...              'which forwardly selects radial basis functions to generate', ...              'the data model. It includes optional ridge regression to', ...              'help control model complexity and can automatically estimate', ...              'the regularisation parameter.'}}, ...  'commands', '', ...  'question', '', ...  'optional', '');n = n + 1;mydemo(n) = struct( ...  'comments', {{ ...              'First, let''s try the method on a relatively easy 1D problem,', ...              'the ''hermite'' data set. We''ll first get an instance of', ...              'a training set for that problem and take a look at it.'}}, ...  'commands', {{ ...              '[x, y, dconf] = get_data(''hermite'');', ...              'fig = get_fig(''rbf_fs_2 demo'');', ...              'hold off', ...              'plot(x, y, ''r*'')', ...              '%set(gca, ''XLim'', [dconf.x1 dconf.x2])', ...              '%set(gca, ''YLim'', [floor(min(y)) ceil(max(y))])', ...              '%set(gca, ''XTick'', dconf.x1:dconf.x2)', ...              '%set(gca, ''YTick'', floor(min(y)):ceil(max(y)))', ...              '%xlabel(''x'', ''FontSize'', 16)', ...              '%ylabel(''y'', ''FontSize'', 16, ''Rotation'', 0)'}}, ...  'question', '', ...  'optional', '');n = n + 1;mydemo(n) = struct( ...  'comments', {{ ...              'We''ll also get an uncorrupted (zero noise), ordered test set', ...              'of 400 samples which we can use to judge the accuracy of', ...              'rbf_fs_2 after learning from the training set.'}}, ...  'commands', {{ ...              'dconf.std = 0;', ...              'dconf.ord = 1;', ...              'dconf.p = 400;', ...              '[xt, yt] = get_data(dconf);', ...              'hold on', ...              'plot(xt, yt, ''b-'', ''LineWidth'', 2)'}}, ...  'question', '', ...  'optional', '');n = n + 1;mydemo(n) = struct( ...  'comments', {{ ...              'Now we''ll run the method on the training set (x,y). rbf_fs_2', ...              'will return the centres (c), radii (r) and weights (w) of an', ...              'RBF network. For now, we''ll let rbf_fs_2 choose default values', ...              'for all its control parameters. These parameters are set by', ...              'a third input argument to the routine, a structure with named', ...              'fields corresponding to each parameter. Omitting this argument', ...              'causes the method to use default values.', ...              '', ...              'This may take a few seconds.'}}, ...  'commands', '[c, r, w] = rbf_fs_2(x, y);', ...  'question', '', ...  'optional', '');n = n + 1;mydemo(n) = struct( ...  'comments', {{ ...              'To make predictions, we use rbf_dm to get the design matrix', ...              'of the test set and then multiply this by the weights to get', ...              'the model''s prediction over the test set inputs (xt).'}}, ...  'commands', {{ ...              'Ht = rbf_dm(xt, c, r);', ...              'ft = Ht * w;', ...              'plot(xt, ft, ''m-'', ''LineWidth'', 2)'}}, ...  'question', '', ...  'optional', '');n = n + 1;mydemo(n) = struct( ...  'comments', {{ ...              'The prediction error is obtained by comparing ft and yt.', ...              'We''ll remember this number for comparison later.', ...              '', ...              'The fit doesn''t look too great, so we might want to try to', ...              'improve the performance by changing some of the parameters', ...              'controlling rbf_fs_2, instead of lazily allowing it to operate', ...              'with defaults.'}}, ...  'commands', {{ ...              'err1 = (ft - yt)'' * (ft - yt);', ...              'disp(err1)'}}, ...  'question', '', ...  'optional', '');n = n + 1;mydemo(n) = struct( ...  'comments', {{ ...              'By default rbf_fs_2 uses RBFs with widths equal to the spread', ...              'of the inputs in each dimension, which is pretty large. Large', ...              'RBFs can often work well for multidimensional problems but are', ...              'typically less sucessful for simple 1D problems like ''hermite''.', ...              '', ...              'To try to improve matters we''ll decrease the radius to a size', ...              'estimated from an eyeball inspection of the data.'}}, ...  'commands', 'conf.rad = 1;', ...  'question', '', ...  'optional', '');n = n + 1;mydemo(n) = struct( ...  'comments', {{ ...              'Now we''re ready to try again, this time with the conf structure', ...              'specifying a radius size different from the default.', ...              '', ...              'Once again, the next step may take a few seconds to complete.'}}, ...  'commands', '[c, r, w, info] = rbf_fs_2(x, y, conf);', ...  'question', '', ...  'optional', '');n = n + 1;mydemo(n) = struct( ...  'comments', {{ ...              'Now let''s calculate the predictions and plot them in the figure', ...              '(look for the red curve).'}}, ...  'commands', {{ ...              'Ht = rbf_dm(xt, c, r);', ...              'ft = Ht * w;', ...              'err2 = (ft - yt)'' * (ft - yt);', ...              'plot(xt, ft, ''r-'', ''LineWidth'', 2)'}}, ...  'question', '', ...  'optional', '');n = n + 1;mydemo(n) = struct( ...  'comments', 'Did we improve on the first attempt? Probably very significantly so.', ...  'commands', {{ ...              'disp(err1)', ...              'disp(err2)'}}, ...  'question', '', ...  'optional', '');n = n + 1;mydemo(n) = struct( ...  'comments', {{ ...              'The previous example was a simple 1D problem. The next (and last) example', ...              'involves a more challenging data set for which changes to the default', ...              'configuration once again improve performance, though not as dramatically.'}}, ...  'commands', 'close(fig)', ...  'question', 'Do you want to see the next example?', ...  'optional', {{'yes', 'no'}});n = n + 1;mydemo(n) = struct( ...  'comments', {{ ...              'The data set we''re going to use is also available through the', ...              'get_data routine. It''s name is ''friedman''. The input space is', ...              'four-dimensional, there are 200 samples, and a lot of noise is', ...              'added to the training set outputs.', ...              '', ...              'So first, let''s get our train and test sets.'}}, ...  'commands', {{ ...              '[X, y, dconf] = get_data(''friedman'');', ...              'dconf.std = 0;', ...              'dconf.p = 1000;', ...              '[Xt, yt] = get_data(dconf);'}}, ...  'question', '', ...  'optional', '');n = n + 1;mydemo(n) = struct( ...  'comments', {{ ...              'For this problem it''s customary to scale the test set error', ...              'by the total variance, so before we do anything else, let''s', ...              'just calculate that in case we forget.'}}, ...  'commands', 'scale = sum((yt - sum(yt)/dconf.p).^2);', ...  'question', '', ...  'optional', '');n = n + 1;mydemo(n) = struct( ...  'comments', {{ ...              'Now, as before, we''ll first try the algorithm out without', ...              'altering its default configuration.', ...              '', ...              'The next step may take a little while. For example, it takes', ...              'about 5 seconds on my 233MHz Pentium I laptop. Information', ...              'about the time and FLOPS consumed by the method is available', ...              'from info, the fourth output argument.'}}, ...  'commands', {{ ...              '[C, R, w, info] = rbf_fs_2(X, y);', ...              'disp(info.stats.comps) % FLOPS', ...              'disp(info.stats.ticks) % time in seconds'}}, ...  'question', '', ...  'optional', '');n = n + 1;mydemo(n) = struct( ...  'comments', {{ ...              'Now let''s see how well we can predict the test set by evaluating the', ...              'scaled sum of square errors. For comparison, a method which simply', ...              'predicted an output of zero for any input would score exactly 1.0.', ...              '', ...              'The situation can be improved by changing rbf_fs_2''s configuration', ...              'in two ways, as we will now show.'}}, ...  'commands', {{ ...              'Ht = rbf_dm(Xt, C, R);', ...              'ft = Ht * w;', ...              'err1 = (ft - yt)'' * (ft - yt) / scale;', ...              'disp(err1)'}}, ...  'question', '', ...  'optional', '');n = n + 1;mydemo(n) = struct( ...  'comments', {{ ...              'Often multi-dimensional and noisy data sets are best tackled with', ...              'surprisingly large RBFs. For this ''friedman'' problem a radius of', ...              'around 4 usually works best, even though this exceeds the range of any', ...              'individual input dimension (the inputs are all normalised to range from', ...              '-1 to +1 in each dimension).', ...              '', ...              'To hedge our bets a little, we''ll supply two centres at each input point,', ...              'one with a radius of 5 and another with radius 3. The algorithm can choose', ...              'which of the two it likes best. Note that before we setup the new conf', ...              'structure we should be careful to clear away the previous one.'}}, ...  'commands', {{ ...              'clear conf', ...              'conf.cen = [X X];            % centres', ...              'R3 = 3 * ones(4,size(X,2));  % small radii', ...              'R5 = 5 * ones(4,size(X,2));  % big radii', ...              'conf.rad = [R3 R5];'}}, ...  'question', '', ...  'optional', '');n = n + 1;mydemo(n) = struct( ...  'comments', {{ ...              'Now let''s try that and work out the scaled prediction error again.', ...              'It should have decreased compared to the first attempt.', ...              '', ...              'This may take a few seconds.'}}, ...  'commands', {{ ...              '[C, R, w] = rbf_fs_2(X, y, conf);', ...              'Ht = rbf_dm(Xt, C, R);', ...              'ft = Ht * w;', ...              'err2 = (ft - yt)'' * (ft - yt) / scale;', ...              'disp(err1)', ...              'disp(err2)'}}, ...  'question', '', ...  'optional', '');n = n + 1;mydemo(n) = struct( ...  'comments', {{ ...              'The second change we can make to the algorithm is to regularise as', ...              'well as forward select: further insurance against overfitting. To', ...              'turn regularisation on we set conf.reest to 1 which instructs the', ...              'algorithm to re-estmate the optimal regularisation parameter between', ...              'each selection. This time we don''t clear conf because we want to keep', ...              'the large radii we setup in a previous step.', ...              '', ...              'This may take a few seconds.'}}, ...  'commands', {{ ...              'conf.reest = 1;', ...              '[C, R, w] = rbf_fs_2(X, y, conf);', ...              'Ht = rbf_dm(Xt, C, R);', ...              'ft = Ht * w;', ...              'err3 = (ft - yt)'' * (ft - yt) / scale;'}}, ...  'question', '', ...  'optional', '');n = n + 1;mydemo(n) = struct( ...  'comments', {{ ...              'Finally we can compare the three prediction errors from running the', ...              'method with (1) all its defaults, (2) large radii and (3) large radii', ...              'and regularisation.'}}, ...  'commands', {{ ...              'disp(err1)', ...              'disp(err2)', ...              'disp(err3)'}}, ...  'question', '', ...  'optional', '');n = n + 1;mydemo(n) = struct( ...  'comments', 'End of rbf_fs_2 demo.', ...  'commands', '%clear conf', ...  'question', '', ...  'optional', '');% Define the command(s) necessary to cleanup after the demo (e.g. close figures).cleanup = 'if exist(''fig'', ''var'') if ~isempty(find(findobj(''type'',''figure'') == fig)) close(fig); end; end';

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
色呦呦日韩精品| 日韩高清不卡在线| 亚洲欧美在线aaa| 国产高清亚洲一区| 亚洲精品一区二区三区蜜桃下载| 日本女优在线视频一区二区| 亚洲精品国产a| 69成人精品免费视频| 美女一区二区在线观看| 欧美极品少妇xxxxⅹ高跟鞋| 成人午夜视频在线观看| 国产亚洲一区二区三区| 97精品国产露脸对白| 亚洲精品久久嫩草网站秘色| 成人欧美一区二区三区在线播放| 国产精品久久久久影视| 在线亚洲欧美专区二区| 另类综合日韩欧美亚洲| 亚洲免费观看在线视频| 精品日韩在线一区| 在线视频综合导航| 欧美日本乱大交xxxxx| 成人免费毛片app| 91老司机福利 在线| 国产一区二区调教| 亚洲国产精品人人做人人爽| 欧美videossexotv100| 亚洲精品在线电影| 中文字幕视频一区| 亚洲国产精品久久久久婷婷884| 丝瓜av网站精品一区二区| 亚洲国产成人一区二区三区| 亚洲免费资源在线播放| 午夜日韩在线电影| 一区二区视频免费在线观看| 中文字幕av一区二区三区高| 一区二区三区加勒比av| 久久精品国产一区二区三区免费看| 国内久久精品视频| 日本人妖一区二区| 国产成人在线色| 91精彩视频在线| 成人h动漫精品| 国产福利一区在线| 884aa四虎影成人精品一区| 国产性天天综合网| 日韩成人dvd| 99这里都是精品| 波多野结衣一区二区三区 | 一级日本不卡的影视| 日本伊人午夜精品| 在线中文字幕一区| 国产欧美日韩一区二区三区在线观看 | 国产精品色眯眯| 久久精品一区二区三区av| 亚洲精品免费电影| 成人中文字幕合集| 欧美sm美女调教| 午夜一区二区三区视频| 午夜欧美2019年伦理| 99re在线精品| 久久美女艺术照精彩视频福利播放| 欧美不卡一二三| 亚洲国产成人porn| 色婷婷综合久久久久中文一区二区 | 国产午夜久久久久| 麻豆精品一区二区综合av| 在线观看一区二区视频| 国产精品福利电影一区二区三区四区| 日本成人在线网站| 欧美日韩免费在线视频| 欧美日韩一区二区欧美激情| 成人欧美一区二区三区1314| 国产在线麻豆精品观看| 日韩视频一区二区三区在线播放| 精品日韩一区二区三区 | 欧美一区二区三区在线观看视频| 精品国产乱码久久| 乱中年女人伦av一区二区| 正在播放亚洲一区| 欧美aⅴ一区二区三区视频| 国产成人在线影院| 久久免费视频色| 国产精品一级片| 在线欧美日韩精品| 一区二区三区四区精品在线视频| 99国产麻豆精品| 亚洲免费观看在线视频| 在线观看视频欧美| 日产精品久久久久久久性色| 这里只有精品99re| 国产一区二区导航在线播放| 久久久精品免费免费| 高清shemale亚洲人妖| 欧美美女视频在线观看| 亚洲欧洲精品一区二区精品久久久| 99精品视频在线观看| 一区二区三区四区五区视频在线观看| 欧美日韩午夜影院| 韩国成人精品a∨在线观看| 久久久91精品国产一区二区精品| 成人一区二区三区在线观看| 一区精品在线播放| 欧美欧美午夜aⅴ在线观看| 久久精品国产一区二区| 国产精品久久久久精k8| 欧美亚洲国产一区二区三区va| 国产精品五月天| 在线中文字幕一区| 精品亚洲成a人在线观看| 欧美日韩精品一区二区三区 | 美女视频一区在线观看| 久久亚洲捆绑美女| 蜜臀久久99精品久久久久久9| 精品成人在线观看| 欧美在线看片a免费观看| 激情图区综合网| 专区另类欧美日韩| 成人精品免费网站| 香港成人在线视频| 国产精品高潮呻吟久久| 欧美一区二区视频观看视频| 99久久精品99国产精品| 蜜桃视频一区二区| 久久国产婷婷国产香蕉| 亚洲最大色网站| 欧美激情资源网| 欧美一区二区高清| 91福利视频网站| 国产成人久久精品77777最新版本 国产成人鲁色资源国产91色综 | 99久久99久久精品国产片果冻| 日日欢夜夜爽一区| 《视频一区视频二区| 久久伊人中文字幕| 欧美一卡2卡3卡4卡| 色噜噜夜夜夜综合网| 国产一区二区三区美女| 免费高清视频精品| 亚洲图片欧美综合| 一区二区三区中文字幕在线观看| 国产亚洲成年网址在线观看| 欧美日韩国产高清一区二区三区 | 欧美午夜精品久久久久久超碰| 国产真实乱偷精品视频免| 肉丝袜脚交视频一区二区| 亚洲欧美成aⅴ人在线观看| 久久精品欧美日韩| 欧美精品一区二区三区一线天视频| 欧美电影在哪看比较好| 欧美日韩免费视频| 欧美三级日韩在线| 欧美无砖专区一中文字| 色婷婷av一区二区三区大白胸 | 色国产精品一区在线观看| 成人av高清在线| 成人一二三区视频| 成人午夜在线免费| 91视频91自| 一本一道久久a久久精品| 91影视在线播放| 91行情网站电视在线观看高清版| 99国产精品久久久久久久久久久| av在线综合网| 一本久久综合亚洲鲁鲁五月天| 色婷婷国产精品久久包臀| 日本道色综合久久| 欧美日韩精品一区二区天天拍小说 | 最新热久久免费视频| 亚洲日本丝袜连裤袜办公室| 亚洲精选视频在线| 午夜精品福利一区二区蜜股av| 日韩中文字幕不卡| 久久www免费人成看片高清| 国产精品12区| 91色.com| 欧美日韩高清影院| 欧美精品一区二区三区在线| 欧美激情一区不卡| 亚洲影视在线播放| www激情久久| 国产精品久久久久久久久久免费看 | 91视频国产资源| 欧美视频中文字幕| 欧美电视剧在线看免费| 色婷婷久久久亚洲一区二区三区| 在线一区二区三区| 欧美大片一区二区三区| 国产精品乱码久久久久久| 亚洲午夜一区二区| 国产精品综合av一区二区国产馆| 91在线一区二区| 欧美一级免费大片| 中文字幕精品三区| 三级欧美在线一区| 不卡av电影在线播放| 欧美美女网站色| 国产精品久久久久影院亚瑟| 日韩精品成人一区二区在线| 成人av资源下载| 欧美一级片在线看|