?? public.cpp
字號:
#include "stdafx.h"
#define N 4096 /* size of ring buffer */
#define F 60 /* upper limit for match_length */
#define THRESHOLD 2 /* encode string into position and length
if match_length is greater than this */
#define NIL N /* index for root of binary search trees */
/********** Arithmetic Compression **********/
/* If you are not familiar with arithmetic compression, you should read
I. E. Witten, R. M. Neal, and J. G. Cleary,
Communications of the ACM, Vol. 30, pp. 520-540 (1987),
from which much have been borrowed. */
#define M 15
/* Q1 (= 2 to the M) must be sufficiently large, but not so
large as the unsigned long 4 * Q1 * (Q1 - 1) overflows. */
#define Q1 (1UL << M)
#define Q2 (2 * Q1)
#define Q3 (3 * Q1)
#define Q4 (4 * Q1)
#define MAX_CUM (Q1 - 1)
#define N_CHAR (256 - THRESHOLD + F)
unsigned long textsize;
unsigned long codesize;
unsigned long printcount;
unsigned char text_buf[N + F - 1]; /* ring buffer of size N,with extra F-1 bytes to facilitate string comparison */
int match_position;
int match_length; /* of longest match. These areset by the InsertNode() procedure. */
int lson[N + 1];
int rson[N + 257];
int dad[N + 1]; /* left & right children &parents -- These constitute binary search trees. */
/* character code = 0, 1, ..., N_CHAR - 1 */
unsigned long low;
unsigned long high;
unsigned long value;
int shifts; /* counts for magnifying low and high around Q2 */
int char_to_sym[N_CHAR];
int sym_to_char[N_CHAR + 1];
unsigned int sym_freq[N_CHAR + 1]; /* frequency for symbols */
unsigned int sym_cum[N_CHAR + 1]; /* cumulative freq for symbols */
unsigned int position_cum[N + 1]; /* cumulative freq for positions */
int m_nOutLength;
//int m_nOutCur;
const BYTE *m_pInBuffer;
int m_nInLength;
int m_nInCur;
unsigned int buffer_putbit, mask_putbit;
unsigned int buffer_getbit, mask_getbit;
unsigned int gui_SrcIndex, gui_ObjIndex;
unsigned int gui_InSize;
unsigned char *gp_InBuff, *gp_OutBuff;
void LZARI_LZARI()
{
gp_InBuff = NULL;
gp_OutBuff = NULL;
textsize = 0;
codesize = 0;
printcount = 0;
low = 0;
high = Q4;
value = 0;
shifts = 0; /* counts for magnifying low and high around Q2 */
m_pInBuffer = NULL;
m_nInLength = 0;
m_nInCur = 0;
//m_pOutBuffer = NULL;
m_nOutLength = 0;
// m_nOutCur = 0;
buffer_putbit = 0;
mask_putbit = 128;
buffer_getbit = 0;
mask_getbit = 0;
}
void LZARI_Release()
{
gp_InBuff = NULL;
gp_OutBuff = NULL;
textsize = 0;
codesize = 0;
printcount = 0;
low = 0;
high = Q4;
value = 0;
shifts = 0;
m_pInBuffer = NULL;
m_nInLength = 0;
m_nInCur = 0;
m_nOutLength = 0;
buffer_putbit = 0;
mask_putbit = 128;
buffer_getbit = 0;
mask_getbit = 0;
}
void LZARI_LZARITerm()
{
LZARI_Release();
}
void LZARI_Error(char *message)
{
#ifdef _OUTPUT_STATUS
printf("\n%s\n", message);
#endif
}
int LZARI_putc( unsigned int ui_Write, unsigned char* pOutBuff )
{
#if 0
unsigned char cSwap;
cSwap = ui_Write & 0xff;
pOutBuff[gui_ObjIndex++] = cSwap;
cSwap = ( ui_Write >> 8 ) & 0xff;
pOutBuff[gui_ObjIndex++] = cSwap;
cSwap = ( ui_Write >> 16 ) & 0xff;
pOutBuff[gui_ObjIndex++] = cSwap;
cSwap = ( ui_Write >> 24 ) & 0xff;
pOutBuff[gui_ObjIndex++] = cSwap;
#endif
pOutBuff[gui_ObjIndex++] = ui_Write;
return 4;
}
int LZARI_getc( unsigned char* pInBuff )
{
unsigned int ui_Return = 0;
if( gui_SrcIndex >= gui_InSize )
{
return EOF;
}
ui_Return |= pInBuff[gui_SrcIndex ++];
return ui_Return;
#if 0
//ui_Return <<= 8;
ui_Return |= pInBuff[gui_SrcIndex ++];
if( gui_SrcIndex >= gui_InSize )
{
return ui_Return;
}
ui_Return <<= 8;
ui_Return |= pInBuff[gui_SrcIndex ++];
if( gui_SrcIndex >= gui_InSize )
{
return ui_Return;
}
ui_Return <<= 8;
ui_Return |= pInBuff[gui_SrcIndex ++];
if( gui_SrcIndex >= gui_InSize )
{
return ui_Return;
}
ui_Return <<= 8;
ui_Return |= pInBuff[gui_SrcIndex ++];
return ui_Return;
#endif
}
void LZARI_PutBit(int bit) /* Output one bit (bit = 0,1) */
{
if (bit)
buffer_putbit |= mask_putbit;
if ((mask_putbit >>= 1) == 0)
{
{
if (LZARI_putc(buffer_putbit, gp_OutBuff) == EOF)
LZARI_Error("Write Error");
}
buffer_putbit = 0;
mask_putbit = 128;
codesize++;
}
}
void LZARI_FlushBitBuffer(void) /* Send remaining bits */
{
int i;
for (i = 0; i < 7; i++)
LZARI_PutBit(0);
}
int LZARI_GetBit(void) /* Get one bit (0 or 1) */
{
if ((mask_getbit >>= 1) == 0)
{
buffer_getbit = LZARI_getc( gp_InBuff );
mask_getbit = 128;
}
return ((buffer_getbit & mask_getbit) != 0);
}
/********** LZSS with multiple binary trees **********/
void LZARI_InitTree(void) /* Initialize trees */
{
int i;
/* For i = 0 to N - 1, rson[i] and lson[i] will be the right and
left children of node i. These nodes need not be initialized.
Also, dad[i] is the parent of node i. These are initialized to
NIL (= N), which stands for 'not used.'
For i = 0 to 255, rson[N + i + 1] is the root of the tree
for strings that begin with character i. These are initialized
to NIL. Note there are 256 trees. */
for (i = N + 1; i <= N + 256; i++)
rson[i] = NIL; /* root */
for (i = 0; i < N; i++)
dad[i] = NIL; /* node */
}
void LZARI_InsertNode(int r)
/* Inserts string of length F, text_buf[r..r+F-1], into one of the
trees (text_buf[r]'th tree) and returns the longest-match position
and length via the global variables match_position and match_length.
If match_length = F, then removes the old node in favor of the new
one, because the old one will be deleted sooner.
Note r plays double role, as tree node and position in buffer. */
{
int i, p, cmp, temp;
unsigned char *key;
cmp = 1; key = &text_buf[r]; p = N + 1 + key[0];
rson[r] = lson[r] = NIL; match_length = 0;
for ( ; ; )
{
if (cmp >= 0)
{
if (rson[p] != NIL) p = rson[p];
else { rson[p] = r; dad[r] = p; return; }
} else
{
if (lson[p] != NIL) p = lson[p];
else { lson[p] = r; dad[r] = p; return; }
}
for (i = 1; i < F; i++)
if ((cmp = key[i] - text_buf[p + i]) != 0) break;
if (i > THRESHOLD)
{
if (i > match_length)
{
match_position = (r - p) & (N - 1);
if ((match_length = i) >= F) break;
} else if (i == match_length)
{
if ((temp = (r - p) & (N - 1)) < match_position)
match_position = temp;
}
}
}
dad[r] = dad[p]; lson[r] = lson[p]; rson[r] = rson[p];
dad[lson[p]] = r; dad[rson[p]] = r;
if (rson[dad[p]] == p) rson[dad[p]] = r;
else lson[dad[p]] = r;
dad[p] = NIL; /* remove p */
}
void LZARI_DeleteNode(int p) /* Delete node p from tree */
{
int q;
if (dad[p] == NIL) return; /* not in tree */
if (rson[p] == NIL) q = lson[p];
else if (lson[p] == NIL) q = rson[p];
else
{
q = lson[p];
if (rson[q] != NIL)
{
do { q = rson[q]; } while (rson[q] != NIL);
rson[dad[q]] = lson[q]; dad[lson[q]] = dad[q];
lson[q] = lson[p]; dad[lson[p]] = q;
}
rson[q] = rson[p]; dad[rson[p]] = q;
}
dad[q] = dad[p];
if (rson[dad[p]] == p) rson[dad[p]] = q;
else lson[dad[p]] = q;
dad[p] = NIL;
}
/********** Arithmetic Compression **********/
/* If you are not familiar with arithmetic compression, you should read
I. E. Witten, R. M. Neal, and J. G. Cleary,
Communications of the ACM, Vol. 30, pp. 520-540 (1987),
from which much have been borrowed. */
/* character code = 0, 1, ..., N_CHAR - 1 */
void LZARI_StartModel(void) /* Initialize model */
{
int ch, sym, i;
sym_cum[N_CHAR] = 0;
for (sym = N_CHAR; sym >= 1; sym--)
{
ch = sym - 1;
char_to_sym[ch] = sym; sym_to_char[sym] = ch;
sym_freq[sym] = 1;
sym_cum[sym - 1] = sym_cum[sym] + sym_freq[sym];
}
sym_freq[0] = 0; /* sentinel (!= sym_freq[1]) */
position_cum[N] = 0;
for (i = N; i >= 1; i--)
position_cum[i - 1] = position_cum[i] + 10000 / (i + 200);
/* empirical distribution function (quite tentative) */
/* Please devise a better mechanism! */
}
void LZARI_UpdateModel(int sym)
{
int i, c, ch_i, ch_sym;
if (sym_cum[0] >= MAX_CUM)
{
c = 0;
for (i = N_CHAR; i > 0; i--)
{
sym_cum[i] = c;
c += (sym_freq[i] = (sym_freq[i] + 1) >> 1);
}
sym_cum[0] = c;
}
for (i = sym; sym_freq[i] == sym_freq[i - 1]; i--) ;
if (i < sym)
{
ch_i = sym_to_char[i]; ch_sym = sym_to_char[sym];
sym_to_char[i] = ch_sym; sym_to_char[sym] = ch_i;
char_to_sym[ch_i] = sym; char_to_sym[ch_sym] = i;
}
sym_freq[i]++;
while (--i >= 0) sym_cum[i]++;
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -