?? bpnet.cpp
字號:
// BpNet.cpp : implementation file
////////////////////////////////////////////////////////////////////
/////////////////人工神經網絡BP算法/////////////////////////////////
//1、動態改變學習速率
//2、加入動量項
//3、運用了Matcom4.5的矩陣運算庫(可免費下載,頭文件matlib.h),
// 方便矩陣運算,當然,也可自己寫矩陣類
//4、可暫停運算
//5、可將網絡以文件的形式保存、恢復
///////////////作者:同濟大學材料學院 張純禹//////////////////////
///////////////email:chunyu_79@hotmail.com//////////////////////////
///////////////QQ:53806186//////////////////////////////////////////
///////////////歡迎不斷改進!歡迎討論其他實用的算法!/////////////////
#include "BpNet.h"
#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif
/////////////////////////////////////////////////////////////////////////////
// CBpNet
IMPLEMENT_SERIAL( CBpNet, CObject, 1 )
CBpNet::CBpNet()
{initM(MATCOM_VERSION);//啟用矩陣運算庫
}
CBpNet::~CBpNet()
{exitM();
delete this;
}
/////////////////////////////////////////////////////////////////////////////
// CBpNet message handlers
//創建新網絡
void CBpNet::Create(Mm mInputData, Mm mTarget, int iInput, int iHidden, int iOutput)
{ int i,j;
mSampleInput=zeros(mInput.rows(),mInput.cols());
mSampleTarget=zeros(mTarget.rows(),mTarget.cols());
mSampleInput=mInputData;
mSampleTarget=mTarget;
this->iInput=iInput;
this->iHidden=iHidden;
this->iOutput=iOutput;
//創建計算用的單個樣本矩陣
mInput=zeros(1,this->iInput);
mHidden=zeros(1,this->iHidden);
mOutput=zeros(1,this->iOutput);
//創建權重矩陣,并賦初值
mWeighti=zeros(this->iInput,this->iHidden);
mWeighto=zeros(this->iHidden,this->iOutput);
//賦初值
for(i=1;i<=this->iInput;i++)
for(j=1;j<=this->iHidden;j++)
mWeighti.r(i,j)=randab(-1.0,1.0);
for(i=1;i<=this->iHidden;i++)
for(j=1;j<=this->iOutput;j++)
mWeighto.r(i,j)=randab(-1.0,1.0);
//創建闕值矩陣,并賦值
mThresholdi=zeros(1,this->iHidden);
for(i=1;i<=this->iHidden;i++)
mThresholdi.r(i)=randab(-1.0,1.0);
mThresholdo=zeros(1,this->iOutput);
for(i=1;i<=this->iOutput;i++)
mThresholdo.r(i)=randab(-1.0,1.0);
//創建權重變化矩陣
mChangei=zeros(this->iInput,this->iHidden);
mChangeo=zeros(this->iHidden,this->iOutput);
mInputNormFactor=zeros(iInput,2);
mTargetNormFactor=zeros(iOutput,2);
//誤差矩陣
mOutputDeltas=zeros(iOutput);
mHiddenDeltas=zeros(iHidden);
//學習速率賦值
dblLearnRate1=0.5;
dblLearnRate2=0.5;
dblMomentumFactor=0.95;
m_isOK=false;
m_IsStop=false;
dblMse=1.0e-6;//誤差限
dblError=1.0;
lEpochs=0;
}
//根據已有的網絡進行預測
Mm CBpNet::simulate(Mm mData)
{int i,j;
Mm mResult;
Mm data=zeros(mData.rows(),mData.cols());
data=mData;
if(mData.cols()!=iInput)
{::MessageBox(NULL,"輸入數據變量個數錯誤!","輸入數據變量個數錯誤!",MB_OK);
return mResult;
}
mResult=zeros(data.rows(),iOutput);
//正規化數據
for(i=1;i<=data.rows();i++)
for(j=1;j<=data.cols();j++)
data.r(i,j)=(data.r(i,j)-mInputNormFactor.r(j,1))/(mInputNormFactor.r(j,2)-mInputNormFactor.r(j,1));
//計算
int iSample;
Mm mInputdata,mHiddendata,mOutputdata;
mInputdata=zeros(1,iInput);
mHiddendata=zeros(1,iHidden);
mOutputdata=zeros(1,iOutput);
double sum=0.0;
for(iSample=1;iSample<=data.rows();iSample++){
//輸入層數據
for(i=1;i<=iInput;i++)
mInputdata.r(i)=data.r(iSample,i);
//隱層數據
for(j=1;j<=iHidden;j++){
sum=0.0;
for(i=1;i<=iInput;i++)
sum+=mInputdata.r(i)*mWeighti.r(i,j);
sum-=mThresholdi.r(j);
mHiddendata.r(j)=1.0/(1.0+exp(-sum));
}
//輸出數據
for(j=1;j<=iOutput;j++){
sum=0.0;
for(i=1;i<=iHidden;i++)
sum+=mHiddendata.r(i)*mWeighto.r(i,j);
sum-=mThresholdo.r(j);
mOutputdata.r(j)=1.0/(1.0+exp(-sum));
}
//轉換
for(j=1;j<=iOutput;j++)
mResult.r(iSample,j)=mOutputdata.r(j)*(mTargetNormFactor.r(j,2)-mTargetNormFactor.r(j,1))+mTargetNormFactor.r(j,1);
}
return (mResult);
}
void CBpNet::LoadBpNet(CString &strNetName)
{CFile file;
if(file.Open(strNetName,CFile::modeRead)==0)
{MessageBox(NULL,"無法打開文件!","錯誤",MB_OK);
return;
}
else{
CArchive myar(&file,CArchive::load);
Serialize(myar);
myar.Close();
}
file.Close();
}
bool CBpNet::SaveBpNet(CString &strNetName)
{CFile file;
if(strNetName.GetLength()==0)
return(false);
if(file.Open(strNetName,CFile::modeCreate|CFile::modeWrite)==0)
{MessageBox(NULL,"無法創建文件!","錯誤",MB_OK);
return(false);
}
else{
CArchive myar(&file,CArchive::store);
Serialize(myar);
myar.Close();
}
file.Close();
return(true);
}
//網絡學習
void CBpNet::learn()
{ int iSample=1;
double dblTotal;
MSG msg;
if(m_IsStop)
m_IsStop=false;
//數據正規化處理
normalize();
while(dblError>dblMse&&!m_IsStop){
dblTotal=0.0;
for(iSample=1;iSample<=mSampleInput.rows();iSample++){
forward(iSample);
backward(iSample);
dblTotal+=dblErr;//總誤差
}
if(dblTotal/dblError>1.04){//動態改變學習速率
dblLearnRate1*=0.7;
dblLearnRate2*=0.7;
}
else{
dblLearnRate1*=1.05;
dblLearnRate2*=1.05;
}
lEpochs++;
dblError=dblTotal;
::PeekMessage(&msg,NULL,0,0,PM_REMOVE);
::DispatchMessage(&msg);
msg.message=-1;
::DispatchMessage(&msg);//這樣可以消除屏閃和假死機
}
if(dblError<=dblMse)
m_isOK=true;
else
m_isOK=false;
}
void CBpNet::stop()
{
m_IsStop=true;
}
double CBpNet::randab(double a, double b)
{ //注意,如果應用矩陣庫,頭文件matlib.h對rand()函數重新定義,只產生(0,1)
//之間的隨機數
return((b-a)*rand()+a);
}
//將數據轉化到(0,1)區間
void CBpNet::normalize()
{
int i,j;
//輸入數據范圍
mInputNormFactor=scope(mSampleInput);
//目標數據范圍
mTargetNormFactor=scope(mSampleTarget);
for(i=1;i<=mSampleInput.rows();i++)
for(j=1;j<=mSampleInput.cols();j++)
mSampleInput.r(i,j)=(mSampleInput.r(i,j)-mInputNormFactor.r(j,1))/(mInputNormFactor.r(j,2)-mInputNormFactor.r(j,1));
for(i=1;i<=mSampleTarget.rows();i++)
for(j=1;j<=mSampleTarget.cols();j++)
mSampleTarget.r(i,j)=(mSampleTarget.r(i,j)-mTargetNormFactor.r(j,1))/(mTargetNormFactor.r(j,2)-mTargetNormFactor.r(j,1));
}
//前向計算
void CBpNet::forward(int iSample)
{//根據第iSample個樣本,前向計算
if(iSample<1||iSample>mSampleInput.rows()){
MessageBox(NULL,"無此樣本數據:索引出界!","無此樣本數據:索引出界!",MB_OK);
return;
}
int i,j;
double sum=0.0;
//輸入層數據
for(i=1;i<=iInput;i++)
mInput.r(i)=mSampleInput.r(iSample,i);
//隱層數據
for(j=1;j<=iHidden;j++){
sum=0.0;
for(i=1;i<=iInput;i++)
sum+=mInput.r(i)*mWeighti.r(i,j);
sum-=mThresholdi.r(j);
mHidden.r(j)=1.0/(1.0+exp(-sum));
}
//輸出數據
for(j=1;j<=iOutput;j++){
sum=0.0;
for(i=1;i<=iHidden;i++)
sum+=mHidden.r(i)*mWeighto.r(i,j);
sum-=mThresholdo.r(j);
mOutput.r(j)=1.0/(1.0+exp(-sum));
}
}
//后向反饋
void CBpNet::backward(int iSample)
{
if(iSample<1||iSample>mSampleInput.rows()){
MessageBox(NULL,"無此樣本數據:索引出界!","無此樣本數據:索引出界!",MB_OK);
return;
}
int i,j;
//輸出誤差
for(i=1;i<=iOutput;i++)
mOutputDeltas.r(i)=mOutput.r(i)*(1-mOutput.r(i))*(mSampleTarget.r(iSample,i)-mOutput.r(i));
//隱層誤差
double sum=0.0;
for(j=1;j<=iHidden;j++){
sum=0.0;
for(i=1;i<=iOutput;i++)
sum+=mOutputDeltas.r(i)*mWeighto.r(j,i);
mHiddenDeltas.r(j)=mHidden.r(j)*(1-mHidden.r(j))*sum;
}
//更新隱層-輸出權重
double dblChange;
for(j=1;j<=iHidden;j++)
for(i=1;i<=iOutput;i++){
dblChange=mOutputDeltas.r(i)*mHidden.r(j);
mWeighto.r(j,i)=mWeighto.r(j,i)+dblLearnRate2*dblChange+dblMomentumFactor*mChangeo.r(j,i);
mChangeo.r(j,i)=dblChange;
}
//更新輸入-隱層權重
for(i=1;i<=iInput;i++)
for(j=1;j<=iHidden;j++){
dblChange=mHiddenDeltas.r(j)*mInput.r(i);
mWeighti.r(i,j)=mWeighti.r(i,j)+dblLearnRate1*dblChange+dblMomentumFactor*mChangei.r(i,j);
mChangei.r(i,j)=dblChange;
}
//修改闕值
for(j=1;j<=iOutput;j++)
mThresholdo.r(j)-=dblLearnRate2*mOutputDeltas.r(j);
for(i=1;i<=iHidden;i++)
mThresholdi.r(i)-=dblLearnRate1*mHiddenDeltas.r(i);
//計算誤差
dblErr=0.0;
for(i=1;i<=iOutput;i++)
dblErr+=0.5*(mSampleTarget.r(iSample,i)-mOutput.r(i))*(mSampleTarget.r(iSample,i)-mOutput.r(i));
}
//求數據列的范圍
Mm CBpNet::scope(Mm mData)
{Mm mScope;
mScope=zeros(mData.cols(),2);
double min,max;
for(int i=1;i<=mData.cols();i++){
min=max=mData.r(1,i);
for(int j=1;j<=mData.rows();j++){
if(mData.r(j,i)>=max)
max=mData.r(j,i);
if(mData.r(j,i)<=min)
min=mData.r(j,i);
}
if(min==max)
min=0.0;
mScope.r(i,1)=min;
mScope.r(i,2)=max;
}
return(mScope);
}
//顯示矩陣數據,方便調試
void CBpNet::display(Mm data)
{CString strData,strTemp;
int i=1,j=1;
for(i=1;i<=data.rows();i++){
for(j=1;j<=data.cols();j++){
strTemp.Format("%.3f ",data.r(i,j));
strData+=strTemp;
}
strData=strData+"\r\n";
}
::MessageBox(NULL,strData,"",MB_OK);
}
void CBpNet::Serialize(CArchive &ar)
{CObject::Serialize(ar);
/////////////////////////////////////
if(ar.IsStoring()){
int i,j;
double dblData;
CString strTemp="Bp";
ar<<strTemp;//寫入標志
//紀錄神經元個數
ar<<iInput<<iHidden<<iOutput;
//紀錄權值
for(i=1;i<=iInput;i++)
for(j=1;j<=iHidden;j++){
dblData=mWeighti.r(i,j);
ar<<dblData;
}
for(i=1;i<=iHidden;i++)
for(j=1;j<=iOutput;j++){
dblData=mWeighto.r(i,j);
ar<<dblData;
}
//記錄權值變化
for(j=1;j<=iHidden;j++)
for(i=1;i<=iOutput;i++)
ar<<mChangeo.r(j,i);
//輸入-隱層權重變化
for(i=1;i<=iInput;i++)
for(j=1;j<=iHidden;j++)
ar<<mChangei.r(i,j);
//紀錄闕值
for(i=1;i<=iHidden;i++){
dblData=mThresholdi.r(i);
ar<<dblData;
}
for(i=1;i<=iOutput;i++){
dblData=mThresholdo.r(i);
ar<<dblData;
}
//紀錄輸入輸出的極值
for(i=1;i<=iInput;i++){
dblData=mInputNormFactor.r(i,1);
ar<<dblData; //極小值
dblData=mInputNormFactor.r(i,2);
ar<<dblData; //極大值
}
for(i=1;i<=iOutput;i++)
{dblData=mTargetNormFactor.r(i,1);
ar<<dblData; //輸出數據極小值
dblData=mTargetNormFactor.r(i,2);
ar<<dblData;
}
//誤差范圍
ar<<dblMse;
//學習速率
ar<<dblLearnRate1<<dblLearnRate2;
}
else{
int i,j;
CString strTemp="";
double dblTemp;
ar>>strTemp;//讀入標志
//讀入神經元個數
ar>>iInput>>iHidden>>iOutput;
mChangei=zeros(iInput,iHidden);
mChangeo=zeros(iHidden,iOutput);
mWeighti=zeros(iInput,iHidden);
mWeighto=zeros(iHidden,iOutput);
//讀入權值
for(i=1;i<=iInput;i++)
for(j=1;j<=iHidden;j++)
{ ar>>dblTemp;
mWeighti.r(i,j)=dblTemp;
}
for(i=1;i<=iHidden;i++)
for(j=1;j<=iOutput;j++)
{ ar>>dblTemp;
mWeighto.r(i,j)=dblTemp;
}
//讀入權值變化
for(j=1;j<=iHidden;j++)
for(i=1;i<=iOutput;i++)
ar>>mChangeo.r(j,i);
//輸入-隱層權重
for(i=1;i<=iInput;i++)
for(j=1;j<=iHidden;j++)
ar>>mChangei.r(i,j);
//讀入闕值
mThresholdi=zeros(1,iHidden);
for(i=1;i<=iHidden;i++)
{ar>>dblTemp;
mThresholdi.r(i)=dblTemp;
}
mThresholdo=zeros(1,iOutput);
for(i=1;i<=iOutput;i++)
{ar>>dblTemp;
mThresholdo.r(i)=dblTemp;
}
//讀入輸入輸出的極值
mInputNormFactor=zeros(iInput,2);
for(i=1;i<=iInput;i++){
ar>>dblTemp;
mInputNormFactor.r(i,1)=dblTemp; //極小值
ar>>dblTemp;
mInputNormFactor.r(i,2)=dblTemp; //極大值
}
mTargetNormFactor=zeros(iOutput,2);
for(i=1;i<=iOutput;i++)
{ar>>dblTemp;
mTargetNormFactor.r(i,1)=dblTemp; //輸出數據極小值
ar>>dblTemp;
mTargetNormFactor.r(i,2)=dblTemp;
}
//讀入誤差范圍
ar>>dblMse;
//讀入學習速率
ar>>dblLearnRate1>>dblLearnRate2;
//創建計算用的單個樣本矩陣
mInput=zeros(1,iInput);
mHidden=zeros(1,iHidden);
mOutput=zeros(1,iOutput);
//誤差矩陣
mOutputDeltas=zeros(iOutput);
mHiddenDeltas=zeros(iHidden);
}
}
//如果不是新網絡,比如從文件恢復的網絡,調用此函數構建學習樣本
void CBpNet::LoadPattern(Mm mIn, Mm mOut)
{ if(mIn.cols()!=iInput||mOut.cols()!=iOutput){
::MessageBox( NULL,"學習樣本格式錯誤!","錯誤",MB_OK);
return;
}
mSampleInput=zeros(mIn.rows(),mIn.cols());
mSampleTarget=zeros(mOut.rows(),mOut.cols());
mSampleInput=mIn;
mSampleTarget=mOut;
m_isOK=false;
m_IsStop=false;
lEpochs=0;
dblMomentumFactor=0.95;
dblError=1.0;
}
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -