?? 管道及有名管道.txt
字號:
if((cmd<0)||(cmd>256))
//suppose child only support 256 commands
{
printf("child: invalid command \n");
return -1;
}
printf("child: the cmd from parent is %d\n", cmd);
return 0;
}
1.5管道的局限性
管道的主要局限性正體現在它的特點上:
* 只支持單向數據流;
* 只能用于具有親緣關系的進程之間;
* 沒有名字;
* 管道的緩沖區是有限的(管道制存在于內存中,在管道創建時,為緩沖區分配一個頁面大小);
* 管道所傳送的是無格式字節流,這就要求管道的讀出方和寫入方必須事先約定好數據的格式,比如多少字節算作一個消息(或命令、或記錄)等等;
2、 有名管道概述及相關API應用
2.1 有名管道相關的關鍵概念
管道應用的一個重大限制是它沒有名字,因此,只能用于具有親緣關系的進程間通信,在有名管道(named pipe或FIFO)提出后,該限制得到了克服。FIFO不同于管道之處在于它提供一個路徑名與之關聯,以FIFO的文件形式存在于文件系統中。這樣,即使與FIFO的創建進程不存在親緣關系的進程,只要可以訪問該路徑,就能夠彼此通過FIFO相互通信(能夠訪問該路徑的進程以及FIFO的創建進程之間),因此,通過FIFO不相關的進程也能交換數據。值得注意的是,FIFO嚴格遵循先進先出(first in first out),對管道及FIFO的讀總是從開始處返回數據,對它們的寫則把數據添加到末尾。它們不支持諸如lseek()等文件定位操作。
2.2有名管道的創建
#include <sys/types.h>
#include <sys/stat.h>
int mkfifo(const char * pathname, mode_t mode)
該函數的第一個參數是一個普通的路徑名,也就是創建后FIFO的名字。第二個參數與打開普通文件的open()函數中的mode 參數相同。如果mkfifo的第一個參數是一個已經存在的路徑名時,會返回EEXIST錯誤,所以一般典型的調用代碼首先會檢查是否返回該錯誤,如果確實返回該錯誤,那么只要調用打開FIFO的函數就可以了。一般文件的I/O函數都可以用于FIFO,如close、read、write等等。
2.3有名管道的打開規則
有名管道比管道多了一個打開操作:open。
FIFO的打開規則:
如果當前打開操作是為讀而打開FIFO時,若已經有相應進程為寫而打開該FIFO,則當前打開操作將成功返回;否則,可能阻塞直到有相應進程為寫而打開該FIFO(當前打開操作設置了阻塞標志);或者,成功返回(當前打開操作沒有設置阻塞標志)。
如果當前打開操作是為寫而打開FIFO時,如果已經有相應進程為讀而打開該FIFO,則當前打開操作將成功返回;否則,可能阻塞直到有相應進程為讀而打開該FIFO(當前打開操作設置了阻塞標志);或者,返回ENXIO錯誤(當前打開操作沒有設置阻塞標志)。
對打開規則的驗證參見附2。
2.4有名管道的讀寫規則
從FIFO中讀取數據:
約定:如果一個進程為了從FIFO中讀取數據而阻塞打開FIFO,那么稱該進程內的讀操作為設置了阻塞標志的讀操作。
* 如果有進程寫打開FIFO,且當前FIFO內沒有數據,則對于設置了阻塞標志的讀操作來說,將一直阻塞。對于沒有設置阻塞標志讀操作來說則返回-1,當前errno值為EAGAIN,提醒以后再試。
* 對于設置了阻塞標志的讀操作說,造成阻塞的原因有兩種:當前FIFO內有數據,但有其它進程在讀這些數據;另外就是FIFO內沒有數據。解阻塞的原因則是FIFO中有新的數據寫入,不論信寫入數據量的大小,也不論讀操作請求多少數據量。
* 讀打開的阻塞標志只對本進程第一個讀操作施加作用,如果本進程內有多個讀操作序列,則在第一個讀操作被喚醒并完成讀操作后,其它將要執行的讀操作將不再阻塞,即使在執行讀操作時,FIFO中沒有數據也一樣(此時,讀操作返回0)。
* 如果沒有進程寫打開FIFO,則設置了阻塞標志的讀操作會阻塞。
注:如果FIFO中有數據,則設置了阻塞標志的讀操作不會因為FIFO中的字節數小于請求讀的字節數而阻塞,此時,讀操作會返回FIFO中現有的數據量。
向FIFO中寫入數據:
約定:如果一個進程為了向FIFO中寫入數據而阻塞打開FIFO,那么稱該進程內的寫操作為設置了阻塞標志的寫操作。
對于設置了阻塞標志的寫操作:
* 當要寫入的數據量不大于PIPE_BUF時,linux將保證寫入的原子性。如果此時管道空閑緩沖區不足以容納要寫入的字節數,則進入睡眠,直到當緩沖區中能夠容納要寫入的字節數時,才開始進行一次性寫操作。
* 當要寫入的數據量大于PIPE_BUF時,linux將不再保證寫入的原子性。FIFO緩沖區一有空閑區域,寫進程就會試圖向管道寫入數據,寫操作在寫完所有請求寫的數據后返回。
對于沒有設置阻塞標志的寫操作:
* 當要寫入的數據量大于PIPE_BUF時,linux將不再保證寫入的原子性。在寫滿所有FIFO空閑緩沖區后,寫操作返回。
* 當要寫入的數據量不大于PIPE_BUF時,linux將保證寫入的原子性。如果當前FIFO空閑緩沖區能夠容納請求寫入的字節數,寫完后成功返回;如果當前FIFO空閑緩沖區不能夠容納請求寫入的字節數,則返回EAGAIN錯誤,提醒以后再寫;
對FIFO讀寫規則的驗證:
下面提供了兩個對FIFO的讀寫程序,適當調節程序中的很少地方或者程序的命令行參數就可以對各種FIFO讀寫規則進行驗證。
程序1:寫FIFO的程序
#include <sys/types.h>
#include <sys/stat.h>
#include <errno.h>
#include <fcntl.h>
#define FIFO_SERVER "/tmp/fifoserver"
main(int argc,char** argv)
//參數為即將寫入的字節數
{
int fd;
char w_buf[4096*2];
int real_wnum;
memset(w_buf,0,4096*2);
if((mkfifo(FIFO_SERVER,O_CREAT|O_EXCL)<0)&&(errno!=EEXIST))
printf("cannot create fifoserver\n");
if(fd==-1)
if(errno==ENXIO)
printf("open error; no reading process\n");
fd=open(FIFO_SERVER,O_WRONLY|O_NONBLOCK,0);
//設置非阻塞標志
//fd=open(FIFO_SERVER,O_WRONLY,0);
//設置阻塞標志
real_wnum=write(fd,w_buf,2048);
if(real_wnum==-1)
{
if(errno==EAGAIN)
printf("write to fifo error; try later\n");
}
else
printf("real write num is %d\n",real_wnum);
real_wnum=write(fd,w_buf,5000);
//5000用于測試寫入字節大于4096時的非原子性
//real_wnum=write(fd,w_buf,4096);
//4096用于測試寫入字節不大于4096時的原子性
if(real_wnum==-1)
if(errno==EAGAIN)
printf("try later\n");
}
程序2:與程序1一起測試寫FIFO的規則,第一個命令行參數是請求從FIFO讀出的字節數
#include <sys/types.h>
#include <sys/stat.h>
#include <errno.h>
#include <fcntl.h>
#define FIFO_SERVER "/tmp/fifoserver"
main(int argc,char** argv)
{
char r_buf[4096*2];
int fd;
int r_size;
int ret_size;
r_size=atoi(argv[1]);
printf("requred real read bytes %d\n",r_size);
memset(r_buf,0,sizeof(r_buf));
fd=open(FIFO_SERVER,O_RDONLY|O_NONBLOCK,0);
//fd=open(FIFO_SERVER,O_RDONLY,0);
//在此處可以把讀程序編譯成兩個不同版本:阻塞版本及非阻塞版本
if(fd==-1)
{
printf("open %s for read error\n");
exit();
}
while(1)
{
memset(r_buf,0,sizeof(r_buf));
ret_size=read(fd,r_buf,r_size);
if(ret_size==-1)
if(errno==EAGAIN)
printf("no data avlaible\n");
printf("real read bytes %d\n",ret_size);
sleep(1);
}
pause();
unlink(FIFO_SERVER);
}
程序應用說明:
把讀程序編譯成兩個不同版本:
* 阻塞讀版本:br
* 以及非阻塞讀版本nbr
把寫程序編譯成兩個四個版本:
* 非阻塞且請求寫的字節數大于PIPE_BUF版本:nbwg
* 非阻塞且請求寫的字節數不大于PIPE_BUF版本:版本nbw
* 阻塞且請求寫的字節數大于PIPE_BUF版本:bwg
* 阻塞且請求寫的字節數不大于PIPE_BUF版本:版本bw
下面將使用br、nbr、w代替相應程序中的阻塞讀、非阻塞讀
驗證阻塞寫操作:
1. 當請求寫入的數據量大于PIPE_BUF時的非原子性:
o nbr 1000
o bwg
2. 當請求寫入的數據量不大于PIPE_BUF時的原子性:
o nbr 1000
o bw
驗證非阻塞寫操作:
1. 當請求寫入的數據量大于PIPE_BUF時的非原子性:
o nbr 1000
o nbwg
2. 請求寫入的數據量不大于PIPE_BUF時的原子性:
o nbr 1000
o nbw
不管寫打開的阻塞標志是否設置,在請求寫入的字節數大于4096時,都不保證寫入的原子性。但二者有本質區別:
對于阻塞寫來說,寫操作在寫滿FIFO的空閑區域后,會一直等待,直到寫完所有數據為止,請求寫入的數據最終都會寫入FIFO;
而非阻塞寫則在寫滿FIFO的空閑區域后,就返回(實際寫入的字節數),所以有些數據最終不能夠寫入。
對于讀操作的驗證則比較簡單,不再討論。
2.5有名管道應用實例
在驗證了相應的讀寫規則后,應用實例似乎就沒有必要了。
小結:
管道常用于兩個方面:(1)在shell中時常會用到管道(作為輸入輸入的重定向),在這種應用方式下,管道的創建對于用戶來說是透明的;(2)用于具有親緣關系的進程間通信,用戶自己創建管道,并完成讀寫操作。
FIFO可以說是管道的推廣,克服了管道無名字的限制,使得無親緣關系的進程同樣可以采用先進先出的通信機制進行通信。
管道和FIFO的數據是字節流,應用程序之間必須事先確定特定的傳輸"協議",采用傳播具有特定意義的消息。
要靈活應用管道及FIFO,理解它們的讀寫規則是關鍵。
附1:kill -l 的運行結果,顯示了當前系統支持的所有信號:
1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL
5) SIGTRAP 6) SIGABRT 7) SIGBUS 8) SIGFPE
9) SIGKILL 10) SIGUSR1 11) SIGSEGV 12) SIGUSR2
13) SIGPIPE 14) SIGALRM 15) SIGTERM 17) SIGCHLD
18) SIGCONT 19) SIGSTOP 20) SIGTSTP 21) SIGTTIN
22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ
26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO
30) SIGPWR 31) SIGSYS 32) SIGRTMIN 33) SIGRTMIN+1
34) SIGRTMIN+2 35) SIGRTMIN+3 36) SIGRTMIN+4 37) SIGRTMIN+5
38) SIGRTMIN+6 39) SIGRTMIN+7 40) SIGRTMIN+8 41) SIGRTMIN+9
42) SIGRTMIN+10 43) SIGRTMIN+11 44) SIGRTMIN+12 45) SIGRTMIN+13
46) SIGRTMIN+14 47) SIGRTMIN+15 48) SIGRTMAX-15 49) SIGRTMAX-14
50) SIGRTMAX-13 51) SIGRTMAX-12 52) SIGRTMAX-11 53) SIGRTMAX-10
54) SIGRTMAX-9 55) SIGRTMAX-8 56) SIGRTMAX-7 57) SIGRTMAX-6
58) SIGRTMAX-5 59) SIGRTMAX-4 60) SIGRTMAX-3 61) SIGRTMAX-2
62) SIGRTMAX-1 63) SIGRTMAX
除了在此處用來說明管道應用外,接下來的專題還要對這些信號分類討論。
附2:對FIFO打開規則的驗證(主要驗證寫打開對讀打開的依賴性)
#include <sys/types.h>
#include <sys/stat.h>
#include <errno.h>
#include <fcntl.h>
#define FIFO_SERVER "/tmp/fifoserver"
int handle_client(char*);
main(int argc,char** argv)
{
int r_rd;
int w_fd;
pid_t pid;
if((mkfifo(FIFO_SERVER,O_CREAT|O_EXCL)<0)&&(errno!=EEXIST))
printf("cannot create fifoserver\n");
handle_client(FIFO_SERVER);
}
int handle_client(char* arg)
{
int ret;
ret=w_open(arg);
switch(ret)
{
case 0:
{
printf("open %s error\n",arg);
printf("no process has the fifo open for reading\n");
return -1;
}
case -1:
{
printf("something wrong with open the fifo except for ENXIO");
return -1;
}
case 1:
{
printf("open server ok\n");
return 1;
}
default:
{
printf("w_no_r return ????\n");
return 0;
}
}
unlink(FIFO_SERVER);
}
int w_open(char*arg)
//0 open error for no reading
//-1 open error for other reasons
//1 open ok
{
if(open(arg,O_WRONLY|O_NONBLOCK,0)==-1)
{ if(errno==ENXIO)
{
return 0;
}
else
return -1;
}
return 1;
}
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -