?? rf_dagfuncs.c
字號:
RF_Etimer_t timer; int i, retcode; RF_PhysDiskAddr_t *pda; caddr_t undoBuf; retcode = 0; if (node->dagHdr->status == rf_enable) { /* don't do the XOR if the input is the same as the output */ RF_ETIMER_START(timer); for (i=0; i<node->numParams-1; i+=2) if (node->params[i+1].p != node->results[0]) {#if RF_BACKWARD > 0 /* This section mimics undo logging for backward error recovery experiments b * allocating and initializing a buffer * XXX 512 byte sector size is hard coded! */ pda = node->params[i].p; if (node->dagHdr->allocList == NULL) rf_MakeAllocList(node->dagHdr->allocList); RF_CallocAndAdd(undoBuf, 1, 512 * pda->numSector, (caddr_t), node->dagHdr->allocList);#endif /* RF_BACKWARD > 0 */ retcode = rf_XorIntoBuffer(raidPtr, (RF_PhysDiskAddr_t *) node->params[i].p, (char *)node->params[i+1].p, (char *) node->results[0], node->dagHdr->bp); } RF_ETIMER_STOP(timer); RF_ETIMER_EVAL(timer); tracerec->xor_us += RF_ETIMER_VAL_US(timer); } return(rf_GenericWakeupFunc(node, retcode)); /* call wake func explicitly since no I/O in this node */}/* xor the inputs into the result buffer, ignoring placement issues */int rf_SimpleXorFunc(node) RF_DagNode_t *node;{ RF_Raid_t *raidPtr = (RF_Raid_t *)node->params[node->numParams-1].p; int i, retcode = 0; RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec; RF_Etimer_t timer; RF_PhysDiskAddr_t *pda; caddr_t undoBuf; if (node->dagHdr->status == rf_enable) { RF_ETIMER_START(timer); /* don't do the XOR if the input is the same as the output */ for (i=0; i<node->numParams-1; i+=2) if (node->params[i+1].p != node->results[0]) {#if RF_BACKWARD > 0 /* This section mimics undo logging for backward error recovery experiments b * allocating and initializing a buffer * XXX 512 byte sector size is hard coded! */ pda = node->params[i].p; if (node->dagHdr->allocList == NULL) rf_MakeAllocList(node->dagHdr->allocList); RF_CallocAndAdd(undoBuf, 1, 512 * pda->numSector, (caddr_t), node->dagHdr->allocList);#endif /* RF_BACKWARD > 0 */ retcode = rf_bxor((char *)node->params[i+1].p, (char *) node->results[0], rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *)node->params[i].p)->numSector), (struct buf *) node->dagHdr->bp); } RF_ETIMER_STOP(timer); RF_ETIMER_EVAL(timer); tracerec->xor_us += RF_ETIMER_VAL_US(timer); } return(rf_GenericWakeupFunc(node, retcode)); /* call wake func explicitly since no I/O in this node */}/* this xor is used by the degraded-mode dag functions to recover lost data. * the second-to-last parameter is the PDA for the failed portion of the access. * the code here looks at this PDA and assumes that the xor target buffer is * equal in size to the number of sectors in the failed PDA. It then uses * the other PDAs in the parameter list to determine where within the target * buffer the corresponding data should be xored. */int rf_RecoveryXorFunc(node) RF_DagNode_t *node;{ RF_Raid_t *raidPtr = (RF_Raid_t *)node->params[node->numParams-1].p; RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) &raidPtr->Layout; RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *)node->params[node->numParams-2].p; int i, retcode = 0; RF_PhysDiskAddr_t *pda; int suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr,failedPDA->startSector); char *srcbuf, *destbuf; RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec; RF_Etimer_t timer; caddr_t undoBuf; if (node->dagHdr->status == rf_enable) { RF_ETIMER_START(timer); for (i=0; i<node->numParams-2; i+=2) if (node->params[i+1].p != node->results[0]) { pda = (RF_PhysDiskAddr_t *)node->params[i].p;#if RF_BACKWARD > 0 /* This section mimics undo logging for backward error recovery experiments b * allocating and initializing a buffer * XXX 512 byte sector size is hard coded! */ if (node->dagHdr->allocList == NULL) rf_MakeAllocList(node->dagHdr->allocList); RF_CallocAndAdd(undoBuf, 1, 512 * pda->numSector, (caddr_t), node->dagHdr->allocList);#endif /* RF_BACKWARD > 0 */ srcbuf = (char *)node->params[i+1].p; suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector); destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr,suoffset-failedSUOffset); retcode = rf_bxor(srcbuf, destbuf, rf_RaidAddressToByte(raidPtr, pda->numSector), node->dagHdr->bp); } RF_ETIMER_STOP(timer); RF_ETIMER_EVAL(timer); tracerec->xor_us += RF_ETIMER_VAL_US(timer); } return (rf_GenericWakeupFunc(node, retcode));}/***************************************************************************************** * The next three functions are utilities used by the above xor-execution functions. ****************************************************************************************//* * this is just a glorified buffer xor. targbuf points to a buffer that is one full stripe unit * in size. srcbuf points to a buffer that may be less than 1 SU, but never more. When the * access described by pda is one SU in size (which by implication means it's SU-aligned), * all that happens is (targbuf) <- (srcbuf ^ targbuf). When the access is less than one * SU in size the XOR occurs on only the portion of targbuf identified in the pda. */int rf_XorIntoBuffer(raidPtr, pda, srcbuf, targbuf, bp) RF_Raid_t *raidPtr; RF_PhysDiskAddr_t *pda; char *srcbuf; char *targbuf; void *bp;{ char *targptr; int sectPerSU = raidPtr->Layout.sectorsPerStripeUnit; int SUOffset = pda->startSector % sectPerSU; int length, retcode = 0; RF_ASSERT(pda->numSector <= sectPerSU); targptr = targbuf + rf_RaidAddressToByte(raidPtr, SUOffset); length = rf_RaidAddressToByte(raidPtr, pda->numSector); retcode = rf_bxor(srcbuf, targptr, length, bp); return(retcode);}/* it really should be the case that the buffer pointers (returned by malloc) * are aligned to the natural word size of the machine, so this is the only * case we optimize for. The length should always be a multiple of the sector * size, so there should be no problem with leftover bytes at the end. */int rf_bxor(src, dest, len, bp) char *src; char *dest; int len; void *bp;{ unsigned mask = sizeof(long) -1, retcode = 0; if ( !(((unsigned long) src) & mask) && !(((unsigned long) dest) & mask) && !(len&mask) ) { retcode = rf_longword_bxor((unsigned long *) src, (unsigned long *) dest, len>>RF_LONGSHIFT, bp); } else { RF_ASSERT(0); } return(retcode);}/* map a user buffer into kernel space, if necessary */#ifdef KERNEL#define REMAP_VA(_bp,x,y) (y) = (unsigned long *) ((IS_SYS_VA(x)) ? (unsigned long *)(x) : (unsigned long *) rf_MapToKernelSpace((struct buf *) (_bp), (caddr_t)(x)))#else /* KERNEL */#define REMAP_VA(_bp,x,y) (y) = (x)#endif /* KERNEL *//* When XORing in kernel mode, we need to map each user page to kernel space before we can access it. * We don't want to assume anything about which input buffers are in kernel/user * space, nor about their alignment, so in each loop we compute the maximum number * of bytes that we can xor without crossing any page boundaries, and do only this many * bytes before the next remap. */int rf_longword_bxor(src, dest, len, bp) register unsigned long *src; register unsigned long *dest; int len; /* longwords */ void *bp;{ register unsigned long *end = src+len; register unsigned long d0, d1, d2, d3, s0, s1, s2, s3; /* temps */ register unsigned long *pg_src, *pg_dest; /* per-page source/dest pointers */ int longs_this_time; /* # longwords to xor in the current iteration */ REMAP_VA(bp, src, pg_src); REMAP_VA(bp, dest, pg_dest); if (!pg_src || !pg_dest) return(EFAULT); while (len >= 4 ) { longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(pg_src), RF_BLIP(pg_dest)) >> RF_LONGSHIFT); /* note len in longwords */ src += longs_this_time; dest+= longs_this_time; len -= longs_this_time; while (longs_this_time >= 4) { d0 = pg_dest[0]; d1 = pg_dest[1]; d2 = pg_dest[2]; d3 = pg_dest[3]; s0 = pg_src[0]; s1 = pg_src[1]; s2 = pg_src[2]; s3 = pg_src[3]; pg_dest[0] = d0 ^ s0; pg_dest[1] = d1 ^ s1; pg_dest[2] = d2 ^ s2; pg_dest[3] = d3 ^ s3; pg_src += 4; pg_dest += 4; longs_this_time -= 4; } while (longs_this_time > 0) { /* cannot cross any page boundaries here */ *pg_dest++ ^= *pg_src++; longs_this_time--; } /* either we're done, or we've reached a page boundary on one (or possibly both) of the pointers */ if (len) { if (RF_PAGE_ALIGNED(src)) REMAP_VA(bp, src, pg_src); if (RF_PAGE_ALIGNED(dest)) REMAP_VA(bp, dest, pg_dest); if (!pg_src || !pg_dest) return(EFAULT); } } while (src < end) { *pg_dest++ ^= *pg_src++; src++; dest++; len--; if (RF_PAGE_ALIGNED(src)) REMAP_VA(bp, src, pg_src); if (RF_PAGE_ALIGNED(dest)) REMAP_VA(bp, dest, pg_dest); } RF_ASSERT(len == 0); return(0);}/* dst = a ^ b ^ c; a may equal dst see comment above longword_bxor*/int rf_longword_bxor3(dst,a,b,c,len, bp) register unsigned long *dst; register unsigned long *a; register unsigned long *b; register unsigned long *c; int len; /* length in longwords */ void *bp;{ unsigned long a0,a1,a2,a3, b0,b1,b2,b3; register unsigned long *pg_a, *pg_b, *pg_c, *pg_dst; /* per-page source/dest pointers */ int longs_this_time; /* # longs to xor in the current iteration */ char dst_is_a = 0; REMAP_VA(bp, a, pg_a); REMAP_VA(bp, b, pg_b); REMAP_VA(bp, c, pg_c); if (a == dst) {pg_dst = pg_a; dst_is_a = 1;} else { REMAP_VA(bp, dst, pg_dst); } /* align dest to cache line. Can't cross a pg boundary on dst here. */ while ((((unsigned long) pg_dst) & 0x1f)) { *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++; dst++; a++; b++; c++; if (RF_PAGE_ALIGNED(a)) {REMAP_VA(bp, a, pg_a); if (!pg_a) return(EFAULT);} if (RF_PAGE_ALIGNED(b)) {REMAP_VA(bp, a, pg_b); if (!pg_b) return(EFAULT);} if (RF_PAGE_ALIGNED(c)) {REMAP_VA(bp, a, pg_c); if (!pg_c) return(EFAULT);} len--; } while (len > 4 ) { longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(a), RF_MIN(RF_BLIP(b), RF_MIN(RF_BLIP(c), RF_BLIP(dst)))) >> RF_LONGSHIFT); a+= longs_this_time; b+= longs_this_time; c+= longs_this_time; dst+=longs_this_time; len-=longs_this_time; while (longs_this_time >= 4) { a0 = pg_a[0]; longs_this_time -= 4; a1 = pg_a[1]; a2 = pg_a[2]; a3 = pg_a[3]; pg_a += 4; b0 = pg_b[0]; b1 = pg_b[1]; b2 = pg_b[2]; b3 = pg_b[3]; /* start dual issue */ a0 ^= b0; b0 = pg_c[0]; pg_b += 4; a1 ^= b1; a2 ^= b2; a3 ^= b3; b1 = pg_c[1]; a0 ^= b0; b2 = pg_c[2]; a1 ^= b1; b3 = pg_c[3]; a2 ^= b2; pg_dst[0] = a0; a3 ^= b3; pg_dst[1] = a1; pg_c += 4; pg_dst[2] = a2; pg_dst[3] = a3; pg_dst += 4; } while (longs_this_time > 0) { /* cannot cross any page boundaries here */ *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++; longs_this_time--; } if (len) { if (RF_PAGE_ALIGNED(a)) {REMAP_VA(bp, a, pg_a); if (!pg_a) return(EFAULT); if (dst_is_a) pg_dst = pg_a;} if (RF_PAGE_ALIGNED(b)) {REMAP_VA(bp, b, pg_b); if (!pg_b) return(EFAULT);} if (RF_PAGE_ALIGNED(c)) {REMAP_VA(bp, c, pg_c); if (!pg_c) return(EFAULT);} if (!dst_is_a) if (RF_PAGE_ALIGNED(dst)) {REMAP_VA(bp, dst, pg_dst); if (!pg_dst) return(EFAULT);} } } while (len) { *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++; dst++; a++; b++; c++; if (RF_PAGE_ALIGNED(a)) {REMAP_VA(bp, a, pg_a); if (!pg_a) return(EFAULT); if (dst_is_a) pg_dst = pg_a;} if (RF_PAGE_ALIGNED(b)) {REMAP_VA(bp, b, pg_b); if (!pg_b) return(EFAULT);} if (RF_PAGE_ALIGNED(c)) {REMAP_VA(bp, c, pg_c); if (!pg_c) return(EFAULT);} if (!dst_is_a) if (RF_PAGE_ALIGNED(dst)) {REMAP_VA(bp, dst, pg_dst); if (!pg_dst) return(EFAULT);} len--; } return(0);}int rf_bxor3(dst,a,b,c,len, bp) register unsigned char *dst; register unsigned char *a; register unsigned char *b; register unsigned char *c; unsigned long len; void *bp;{ RF_ASSERT(((RF_UL(dst)|RF_UL(a)|RF_UL(b)|RF_UL(c)|len) & 0x7) == 0); return(rf_longword_bxor3((unsigned long *)dst, (unsigned long *)a, (unsigned long *)b, (unsigned long *)c, len>>RF_LONGSHIFT, bp));}
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -