亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? trainlssvm.m

?? The goal of SPID is to provide the user with tools capable to simulate, preprocess, process and clas
?? M
字號:
function [model,b,X,Y]  = trainlssvm(model,X,Y) % Train the support values and the bias term of an LS-SVM for classification or function approximation% % >> [alpha, b] = trainlssvm({X,Y,type,gam,kernel_par,kernel,preprocess})% >> model      = trainlssvm(model)% % type can be 'classifier' or 'function estimation' (these strings% can be abbreviated into 'c' or 'f', respectively). X and Y are% matrices holding the training input and output data. The i-th% data point is represented by the i-th row X(i,:) and Y(i,:). gam% is the regularization parameter: for gam low minimizing of the% complexity of the model is emphasized, for gam high, good fitting% of the training data points is stressed. kernel_par is the% parameter of the kernel; in the common case of an RBF kernel, a% large sig2 indicates a stronger smoothing. The kernel_type% indicates the function that is called to compute the kernel value% (by default RBF_kernel). Other kernels can be used for example: % % >> [alpha, b] = trainlssvm({X,Y,type,gam,[d p],'poly_kernel'})% >> [alpha, b] = trainlssvm({X,Y,type,gam,[]   ,'lin_kernel'})% % The kernel parameter(s) are passed as a row vector, in the case% no kernel parameter is needed, pass the empty vector! % % The training can either be proceeded by the preprocessing% function ('preprocess') (by default) or not ('original'). The% training calls the preprocessing (prelssvm, postlssvm) and the% encoder (codelssvm) if appropiate. % % In the remainder of the text, the content of the cell determining% the LS-SVM is given by {X,Y, type, gam, sig2}. However, the% additional arguments in this cell can always be added in the% calls. % % If one uses the object oriented interface (see also A.3.14), the training is done by% % >> model = trainlssvm(model)% >> model = trainlssvm(model, X, Y)% % The status of the model checks whether a retraining is% needed. The extra arguments X, Y allow to re-initialize the model% with this new training data as long as its dimensions are the% same as the old initiation. % % Three training implementations are included:% %     * The C-implementation linked with CMEX: this implementation%     is based on the iterative solver Conjugate Gradient algorithm%     (CG) (lssvm.mex*). After this training call, a '-' is%     displayed. This is recommended for use on larger data sets. % %     * The C-implementation called via a buffer file: this is%     based on CG; check if the executable 'lssvmFILE.x' is in the%     current directory; (lssvmFILE.x). After this training call, a%     '-' is displayed. %  %     * The Matlab implementation: a straightforward implementation%     based on the matrix division '\' (lssvmMATLAB.m). After this%     training call, a '~' is  displayed. This is recommended for a%     number of training data points smaller than 500 (depending on%     the computer memory).  % % By default, the cmex implementation is called. If this one fails,% the Matlab implementation is chosen instead. One can specify% explicitly which implementation to use using the object oriented% interface. % % This implementation allows to train a multidimensional output% problem. If each output uses the same kernel type, kernel% parameters and regularization parameter, this is% straightforward. If not so, one can specify the different types% and/or parameters as a row vector in the appropriate% argument. Each dimension will be trained with the corresponding% column in this vector. % % >> [alpha, b] = trainlssvm({X, [Y_1 ... Y_d],type,...%                              [gam_1 ... gam_d], ...%                             [sig2_1 ... sig2_d],...%                           {kernel_1,...,kernel_d}})% % Full syntax% %     1. Using the functional interface:% % >> [alpha, b] = trainlssvm({X,Y,type,gam,sig2})% >> [alpha, b] = trainlssvm({X,Y,type,gam,sig2,kernel})% >> [alpha, b] = trainlssvm({X,Y,type,gam,sig2,kernel,preprocess})% %       Outputs    %         alpha         : N x m matrix with support values of the LS-SVM%         b             : 1 x m vector with bias term(s) of the LS-SVM%       Inputs    %         X             : N x d matrix with the inputs of the training data%         Y             : N x 1 vector with the outputs of the training data%         type          : 'function estimation' ('f') or 'classifier' ('c')%         gam           : Regularization parameter%         sig2          : Kernel parameter (bandwidth in the case of the 'RBF_kernel')%         kernel(*)     : Kernel type (by default 'RBF_kernel')%         preprocess(*) : 'preprocess'(*) or 'original'% %%     * Using the object oriented interface:% % >> model = trainlssvm(model)% >> model = trainlssvm({X,Y,type,gam,sig2})% >> model = trainlssvm({X,Y,type,gam,sig2,kernel})% >> model = trainlssvm({X,Y,type,gam,sig2,kernel,preprocess})% %       Outputs    %         model          : Trained object oriented representation of the LS-SVM model%       Inputs    %         model          : Object oriented representation of the LS-SVM model%         X(*)           : N x d matrix with the inputs of the training data%         Y(*)           : N x 1 vector with the outputs of the training data%         type(*)        : 'function estimation' ('f') or 'classifier' ('c')%         gam(*)         : Regularization parameter%         sig2(*)        : Kernel parameter (bandwidth in the case of the 'RBF_kernel')%         kernel(*)      : Kernel type (by default 'RBF_kernel')%         preprocess(*)  : 'preprocess'(*) or 'original'% % See also:%   simlssvm, initlssvm, changelssvm, plotlssvm, prelssvm, codelssvm% Copyright (c) 2002,  KULeuven-ESAT-SCD, License & help @ http://www.esat.kuleuven.ac.be/sista/lssvmlab%% initialise the model 'model'%if (iscell(model)),  model = initlssvm(model{:});end%% given X and Y?%%model = codelssvm(model);eval('model = changelssvm(model,''xtrain'',X);',';');eval('model = changelssvm(model,''ytrain'',Y);',';');eval('model = changelssvm(model,''selector'',1:size(X,1));',';');%% no training needed if status = 'trained'%if model.status(1) == 't',  if (nargout>1),    % [alpha,b]    X = model.xtrain;    Y = model.ytrain;    b = model.b;    model = model.alpha;  end  returnend  %% control of the inputs%if ~((strcmp(model.kernel_type,'RBF_kernel') & length(model.kernel_pars)>=1) |...     (strcmp(model.kernel_type,'lin_kernel') & length(model.kernel_pars)>=0) |...     (strcmp(model.kernel_type,'MLP_kernel') & length(model.kernel_pars)>=2) |...     (strcmp(model.kernel_type,'poly_kernel')& length(model.kernel_pars)>=1)),  eval('feval(model.kernel_type,model.xtrain(1,:),model.xtrain(2,:),model.kernel_pars);model.implementation=''MATLAB'';',...       'error(''The kernel type is not valid or to few arguments'');');elseif (model.steps<=0),  error('steps must be larger then 0');elseif (model.gam<=0),  error('gamma must be larger then 0');% elseif (model.kernel_pars<=0),%   error('sig2 must be larger then 0');elseif or(model.x_dim<=0, model.y_dim<=0),  error('dimension of datapoints must be larger than 0');end%% coding if needed%if model.code(1) == 'c', % changed  model = codelssvm(model);end%% preprocess%eval('if model.prestatus(1)==''c'', changed=1; else changed=0;end;','changed=0;');if model.preprocess(1) =='p' & changed,  model = prelssvm(model);elseif model.preprocess(1) =='o' & changed   model = postlssvm(model);end% clocktic;%% set & control input variables and dimensions% if (model.type(1) == 'f'), % function  dyn_pars=[];elseif (model.type(1) == 'c'), % class  dyn_pars=[];  end% only MATLABif size(model.gam,1)>1,   model.implementation='MATLAB'; end%% output dimension > 1...recursive call on each dimension%if model.y_dim>1,  if (length(model.kernel_pars)==model.y_dim | size(model.gam,2)==model.y_dim |prod(size(model.kernel_type,2))==model.y_dim)    disp('multidimensional output...');    model = trainmultidimoutput(model);    %    % wich output is wanted?    %    if (nargout>1),      X = model.xtrain;      Y = model.ytrain;      b = model.b;      model = model.alpha;    else           model.duration = toc;      model.status = 'trained';    end    return    endend%% call lssvmMATLAB.m, lssvm.mex* or lssvmFILE.m%if strcmpi(model.implementation,'CMEX'),  model.cga_startvalues = [];  eval('model.cga_startvalues;','model.cga_startvalues = [];');    eval(['[model.alpha, model.b,model.cga_startvalues] =' ...	'lssvm(model.xtrain(model.selector, 1:model.x_dim)'',model.x_dim,'...	'model.ytrain(model.selector, 1:model.y_dim),model.y_dim,'...	'model.nb_data, model.type, model.gam,' ...	'model.cga_eps, model.cga_fi_bound,model.cga_max_itr,' ...	'model.cga_startvalues,'...	'model.kernel_type,  model.kernel_pars,' ...	'model.cga_show,dyn_pars);'],...        'model.implementation=''CFILE''; disp(''converting now to CFILE implementation'');');% if error in CMEX ...endif strcmpi(model.implementation,'CFILE'),  eval('model.cga_startvalues;','model.cga_startvalues = [];');  eval('model = lssvmFILE(model,''buffer.mc'');',...       ['model.implementation=''MATLAB'';'...	'disp(''make sure lssvmFILE.x (lssvmFILE.exe) is in the' ...	 ' current directory, change now to MATLAB implementation...'');']);   % if error in CFILE ...endif strcmpi(model.implementation(1),'m'),  model = lssvmMATLAB(model);end%% wich output is wanted?%if (nargout>1),  X = model.xtrain;  Y = model.ytrain;  b = model.b;  model = model.alpha;else       model.duration = toc;  model.status = 'trained';end    %%function model = trainmultidimoutput(model)%% %  model.alpha = zeros(model.nb_data, model.y_dim);  model.b = zeros(1,model.y_dim);  model.cga_startvalues = [];  for d=1:model.y_dim,    eval('gam = model.gam(:,d);','gam = model.gam(:);');    eval('sig2 = model.kernel_pars(:,d);','sig2 = model.kernel_pars(:);');    eval('kernel = model.kernel_typepbvv3n3;','kernel=model.kernel_type;');    [model.alpha(:,d),model.b(d)] = trainlssvm({model.xtrain,model.ytrain(:,d),model.type,gam,sig2,kernel,'original'});  end    %  % wich output is wanted?  %  if (nargout>1),    X = model.xtrain;    Y = model.ytrain;    b = model.b;    model = model.alpha;  else         model.duration = toc;    model.status = 'trained';  end

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美性极品少妇| 日精品一区二区| 欧美精品一区二区三区在线 | 秋霞电影一区二区| 亚洲一区在线电影| 亚洲福利一二三区| 视频一区中文字幕| 免费在线观看精品| 国产麻豆成人传媒免费观看| 国产精品中文有码| 成人18精品视频| 一本一道综合狠狠老| 欧美午夜理伦三级在线观看| 91黄色激情网站| 欧美二区乱c少妇| 久久亚洲一级片| 亚洲国产精品二十页| 亚洲免费av网站| 国产真实乱子伦精品视频| 日韩精品一区二区三区swag| 精品国产免费久久 | 国产欧美日韩视频一区二区| 久久久影视传媒| 亚洲视频在线观看一区| 亚洲一二三四在线| 久久国内精品视频| 不卡一区在线观看| 6080yy午夜一二三区久久| 久久新电视剧免费观看| 中文字幕一区二区三中文字幕| 亚洲精品国久久99热| 蜜臀av一区二区| www.视频一区| 日韩一级二级三级精品视频| 久久精品免费在线观看| 一区二区三区色| 国产一区二区网址| 欧美自拍偷拍一区| 国产亚洲一区二区三区| 亚洲成人午夜电影| 成人av网址在线| 日韩欧美一区二区视频| 亚洲裸体xxx| 国产精品白丝av| 欧美久久久久久蜜桃| 国产精品久久久久桃色tv| 全部av―极品视觉盛宴亚洲| 色综合色综合色综合色综合色综合| 欧美一级欧美三级在线观看| 亚洲人精品午夜| 国产高清一区日本| 日韩视频在线一区二区| 亚洲综合免费观看高清在线观看| 国产精品影视网| 91精品国产乱| 一区二区三区欧美日| 色综合久久久久网| 日韩一区二区中文字幕| 亚洲精品久久7777| 99久久婷婷国产综合精品| 久久综合久久综合久久| 日韩精品一二区| 欧美日高清视频| 亚洲码国产岛国毛片在线| av不卡在线播放| 国产精品丝袜一区| 成人午夜私人影院| 欧美激情一区二区三区在线| 国产一区二区精品久久91| 日韩美女视频在线| 免费观看成人av| 91精品国产综合久久精品性色| 亚洲精品视频在线观看免费 | 国产精品午夜电影| 国产精品18久久久久久久久久久久| 欧美一区二区美女| 奇米影视一区二区三区小说| 5566中文字幕一区二区电影| 五月开心婷婷久久| 欧美一区日韩一区| 久久福利视频一区二区| 精品播放一区二区| 成人中文字幕在线| 亚洲欧洲精品一区二区三区不卡| 成人国产精品视频| 亚洲日本在线视频观看| 在线观看亚洲一区| 视频一区中文字幕| 久久夜色精品一区| 成人午夜激情片| 亚洲欧美国产高清| 欧美日韩国产小视频| 免费成人小视频| 国产日产欧美一区二区三区| 99精品热视频| 日韩影院免费视频| 久久无码av三级| 91在线播放网址| 视频一区在线播放| 久久久久久久网| 色国产精品一区在线观看| 视频一区视频二区中文| 亚洲国产精品精华液2区45| 91小视频在线免费看| 日韩精品欧美成人高清一区二区| 精品国产乱码久久久久久牛牛| 成人免费视频一区| 图片区小说区区亚洲影院| 精品国产乱码久久久久久1区2区| 成人激情黄色小说| 日韩国产欧美三级| 亚洲三级在线免费观看| 欧美一区二区播放| 99精品久久99久久久久| 蜜臀va亚洲va欧美va天堂| 亚洲婷婷国产精品电影人久久| 欧美一区二区三区视频在线| 波多野结衣中文字幕一区| 五月激情六月综合| 中文字幕亚洲区| 精品久久久影院| 欧美三级在线看| 成人av电影在线网| 免费看欧美女人艹b| 一区二区三区四区高清精品免费观看 | 蜜桃91丨九色丨蝌蚪91桃色| 国产精品免费av| 久久综合成人精品亚洲另类欧美| 欧美亚洲高清一区| 欧洲亚洲精品在线| 极品少妇一区二区三区精品视频 | 欧美一区二区视频网站| 99这里只有久久精品视频| 久久av资源站| 日韩专区在线视频| 一区二区三区日韩| 中文字幕字幕中文在线中不卡视频| 日韩视频一区二区| 欧美日本一道本在线视频| 色综合久久久久久久久| 成人中文字幕电影| 国产高清视频一区| 国产一区二区精品久久| 久久99在线观看| 免费高清在线一区| 麻豆精品国产传媒mv男同| 婷婷综合五月天| 午夜精品成人在线视频| 亚洲午夜在线视频| 亚洲成人av资源| 香港成人在线视频| 日韩中文字幕区一区有砖一区 | 日韩影视精彩在线| 婷婷久久综合九色国产成人| 亚洲一线二线三线久久久| 依依成人精品视频| 亚洲国产欧美一区二区三区丁香婷| 亚洲欧美另类图片小说| 亚洲综合在线电影| 亚洲电影激情视频网站| 日韩经典中文字幕一区| 免费精品视频在线| 国精产品一区一区三区mba视频 | 欧美性xxxxxx少妇| 欧美精品 日韩| 精品免费视频.| 国产日本欧洲亚洲| 亚洲视频一二三区| 午夜精品一区二区三区三上悠亚| 午夜久久福利影院| 狠狠v欧美v日韩v亚洲ⅴ| 国产福利精品一区| 91网页版在线| 5858s免费视频成人| 久久久久久久久伊人| 最近日韩中文字幕| 日韩制服丝袜av| 国内精品视频一区二区三区八戒| 成人黄动漫网站免费app| 欧美日韩另类一区| 久久亚洲精品国产精品紫薇| 国产精品乱码妇女bbbb| 亚洲成人一区二区| 国产成人精品在线看| 在线免费av一区| 2020国产精品| 一区二区三区影院| 狠狠网亚洲精品| 日本黄色一区二区| 久久亚洲精品小早川怜子| 亚洲一区精品在线| 国产成a人亚洲| 在线成人免费观看| 亚洲欧洲av在线| 美女网站色91| 欧美色视频在线观看| 日本一区二区三区四区| 肉色丝袜一区二区| 91精彩视频在线| 中文字幕av一区二区三区免费看|