亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? bay_lssvmard.m

?? The goal of SPID is to provide the user with tools capable to simulate, preprocess, process and clas
?? M
字號(hào):
function [inputs,ordered,costs,sig2n,model] = bay_lssvmARD(model,type,btype,nb);% Bayesian Automatic Relevance Determination of the inputs of an LS-SVM% % % >> dimensions = bay_lssvmARD({X,Y,type,gam,sig2})% >> dimensions = bay_lssvmARD(model)% % For a given problem, one can determine the most relevant inputs% for the LS-SVM within the Bayesian evidence framework. To do so,% one assigns a different weighting parameter to each dimension in% the kernel and optimizes this using the third level of% inference. According to the used kernel, one can remove inputs% corresponding the larger or smaller kernel parameters. This% routine only works with the 'RBF_kernel' with a sig2 per% input. In each step, the input with the largest optimal sig2 is% removed (backward selection). For every step, the generalization% performance is approximated by the cost associated with the third% level of Bayesian inference.% % The ARD is based on backward selection of the inputs based on the% sig2s corresponding in each step with a minimal cost% criterion. Minimizing this criterion can be done by 'continuous'% or by 'discrete'. The former uses in each step continuous varying% kernel parameter optimization, the latter decides which one to% remove in each step by binary variables for each component (this% can only applied for rather low dimensional inputs as the number% of possible combinations grows exponentially with the number of% inputs). If working with the 'RBF_kernel', the kernel parameter% is rescaled appropriately after removing an input variable.% % The computation of the Bayesian cost criterion can be based on% the singular value decomposition 'svd' of the full kernel matrix% or by an approximation of these eigenvalues and vectors by the% 'eigs' or 'eign' approximation based on 'nb' data points.% % Full syntax% %     1. Using the functional interface:% % >> [dimensions, ordered, costs, sig2s] =  bay_lssvmARD({X,Y,type,gam,sig2,kernel,preprocess})% >> [dimensions, ordered, costs, sig2s] =  bay_lssvmARD({X,Y,type,gam,sig2,kernel,preprocess}, method)% >> [dimensions, ordered, costs, sig2s] =  bay_lssvmARD({X,Y,type,gam,sig2,kernel,preprocess}, method, type)% >> [dimensions, ordered, costs, sig2s] =  bay_lssvmARD({X,Y,type,gam,sig2,kernel,preprocess}, method, type, nb)% %       Outputs    %         dimensions : r x 1 vector of the relevant inputs%         ordered(*) : d x 1 vector with inputs in decreasing order of relevance%         costs(*)   : Costs associated with third level of inference in every selection step%         sig2s(*)   : Optimal kernel parameters in each selection step%       Inputs    %         X          : N x d matrix with the inputs of the training data%         Y          : N x 1 vector with the outputs of the training data%         type       : 'function estimation' ('f') or 'classifier' ('c')%         gam        : Regularization parameter%         sig2       : Kernel parameter (bandwidth in the case of the 'RBF_kernel')%         kernel(*)  : Kernel type (by default 'RBF_kernel')%         preprocess(*) :'preprocess'(*) or 'original'%         method(*)  : 'discrete'(*) or 'continuous'%         type(*)    : 'svd'(*), 'eig', 'eigs', 'eign'%         nb(*)      :Number of eigenvalues/eigenvectors used in the eigenvalue decomposition approximation% %     2. Using the object oriented interface:% % >> [dimensions, ordered, costs, sig2s, model] = bay_lssvmARD(model)% >> [dimensions, ordered, costs, sig2s, model] = bay_lssvmARD(model, method)% >> [dimensions, ordered, costs, sig2s, model] = bay_lssvmARD(model, method, type)% >> [dimensions, ordered, costs, sig2s, model] = bay_lssvmARD(model, method, type, nb)% %       Outputs    %         dimensions : r x 1 vector of the relevant inputs%         ordered(*) : d x 1 vector with inputs in decreasing order of relevance%         costs(*)   : Costs associated with third level of inference in every selection step%         sig2s(*)   : Optimal kernel parameters in each selection step%         model(*)   : Object oriented representation of the LS-SVM model trained only on the relevant inputs%       Inputs    %         model      : Object oriented representation of the LS-SVM model%         method(*)  : 'discrete'(*) or 'continuous'%         type(*)    : 'svd'(*), 'eig', 'eigs', 'eign'%         nb(*)      : Number of eigenvalues/eigenvectors used in the eigenvalue decomposition approximation% % See also:%   bay_lssvm, bay_optimize, bay_modoutClass, bay_errorbar% Copyright (c) 2002,  KULeuven-ESAT-SCD, License & help @ http://www.esat.kuleuven.ac.be/sista/lssvmlabwarning offeval('type;','type=''discrete'';');eval('btype;','btype=''svd'';');if ~(type(1)=='d' | type(1)=='c'),  error('type needs to be ''continuous'' or ''discrete''...');end  if ~(strcmpi(btype,'svd') | strcmpi(btype,'eig') | strcmpi(btype,'eigs') | strcmpi(btype,'eign')),  error('Eigenvalue decomposition via ''svd'', ''eig'', ''eigs'' or ''eign''.');end% % initiate model%if ~isstruct(model),   model = initlssvm(model{:}); end'OPTIMIZING GAMMA AND KERNEL PARAMETERS WITH BAYESIAN FRAMEWORK OVER ALL INPUTS...'%model = changelssvm(model, 'kernel_type', 'RBF_kernel');eval('[model,kernel_pars,bay] = bay_optimize(model,3,btype,nb);',...     '[model,kernel_pars,bay] = bay_optimize(model,3,btype);');costs(1) = bay.costL3;%% init parameters%eval('nb;','nb=inf;');xdim = model.x_dim;all = 1:xdim;reject = zeros(xdim,1);%% continuous%if type(1)=='c',  if length(model.kernel_pars)~=model.x_dim,    model = changelssvm(model,'kernel_pars',model.kernel_pars(1)*ones(1,model.x_dim));  end  sig2n = zeros(xdim-1,xdim);  [Xtrain,Ytrain] = postlssvm(model,model.xtrain(model.selector,:),model.ytrain(model.selector,:));  for d=1:xdim-1,    ['testing for ' num2str(xdim-d+1) ' inputs']    [modelf,sig2n(d,1:(xdim-d+1)),bay] = ...	bay_optimize({Xtrain(:,all), Ytrain,model.type,model.gam, model.kernel_pars(:,all),model.kernel_type, model.preprocess},...		     3,btype,nb)    costs(d+1,:) = bay.costL3;    [m,reject(d)] = max(sig2n(d,:));    all = setdiff(all,reject(d)); all=reshape(all,1,length(all));        ['SELECTED INPUT(S) (''continuous''): [' num2str(all) ']']  end  reject(xdim) = all;    %% discrete %elseif type(1)=='d',       if length(model.kernel_pars)>1,    error('only 1 kernel parameter supported for the moment, use ''fmin'' instead;');  end  [Xtrain,Ytrain] = postlssvm(model,model.xtrain(model.selector,:), ...			      model.ytrain(model.selector,:));    %  % cost for all  %   [c3,bay] = bay_lssvm({Xtrain, Ytrain,...		    model.type,model.gam, model.kernel_pars,...		    model.kernel_type, model.preprocess}, 3,btype,nb);      costs(1,:) = bay.costL3;        %  % iteration  %  for d=1:xdim-1,    ['testing for ' num2str(xdim-d+1) ' inputs']        % rescaling of kernel parameters    if strcmp(model.kernel_type,'RBF_kernel'),       % RBF      model.kernel_pars = (model.x_dim-d)./model.x_dim.*model.kernel_pars;    else      % else      model = bay_optimize({Xtrain(:,all), Ytrain,...		    model.type,model.gam, model.kernel_pars,model.kernel_type, model.preprocess},3,btype,nb);          end    % which input to remove?    minc3 = inf;    for a = 1:length(all),      [c3,bayf] = bay_lssvm({Xtrain(:,all([1:a-1 a+1:end])), Ytrain,...		      model.type,model.gam, model.kernel_pars,...		      model.kernel_type, model.preprocess}, 3,btype,nb);      if c3<minc3, 	minc3=c3;reject(d)=all(a);bay=bayf;       end    end        % remove input d...    all = setdiff(all,reject(d));all=reshape(all,1,length(all));    costs(d+1) = bay.costL3;    %save ARD_ff        ['SELECTED INPUT(S) (''discrete''): [' num2str(all) ']']  end  reject(xdim) = all;  end%% select best reduction (costL2 lowest)%[mcL2,best] = min(costs);ordered = reject(end:-1:1);inputs = ordered(1:xdim-(best-1));eval('mkp = model.kernel_pars(:,inputs);','mkp = model.kernel_pars;');model = initlssvm(Xtrain(:,inputs),Ytrain,model.type,model.gam, mkp, model.kernel_type, model.preprocess);warning on      

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美在线小视频| 亚洲精品在线免费播放| 日韩一级黄色大片| 亚洲欧洲一区二区在线播放| 香蕉影视欧美成人| 成人高清免费观看| 精品国产91乱码一区二区三区| 亚洲欧美自拍偷拍| 国产福利一区在线| 日韩亚洲国产中文字幕欧美| 一区二区三区四区不卡在线| 国产精品一品视频| 日韩精品一区二区三区三区免费 | 国产精品久久久久久久浪潮网站| 亚洲一级二级在线| 色综合久久久久综合99| 国产欧美综合在线观看第十页| 日本亚洲天堂网| 欧美一区二区在线免费观看| 亚洲影视在线观看| 色综合中文综合网| 中文字幕亚洲电影| 成人少妇影院yyyy| 国产欧美中文在线| 成人永久aaa| 国产精品女主播在线观看| 国产一区二区看久久| 精品国产精品网麻豆系列| 麻豆精品在线播放| 精品欧美一区二区久久| 日韩av一区二区三区| 欧美剧情片在线观看| 日韩电影在线一区| 日韩欧美高清一区| 国产一区二区影院| 国产日韩欧美a| www.久久精品| 亚洲综合区在线| 欧美性受xxxx黑人xyx性爽| 夜夜嗨av一区二区三区中文字幕 | 国产欧美一区视频| 成人高清视频在线| 亚洲免费大片在线观看| 欧美性videosxxxxx| 日韩激情视频在线观看| 在线播放视频一区| 国内久久婷婷综合| 国产欧美一区二区精品性| av网站一区二区三区| 一级中文字幕一区二区| 欧美浪妇xxxx高跟鞋交| 精品一区二区国语对白| 国产网站一区二区三区| 91视频观看视频| 亚洲成av人片在线观看无码| 欧美一级午夜免费电影| 大尺度一区二区| 一区二区久久久| 精品久久国产97色综合| eeuss鲁一区二区三区| 亚洲一区二区三区影院| 欧美www视频| 91视频91自| 美女视频一区在线观看| 国产精品理论在线观看| 欧美日韩国产电影| 成人免费视频一区| 午夜电影网亚洲视频| 国产午夜精品一区二区三区嫩草 | www.欧美色图| 青青草视频一区| 亚洲国产高清在线观看视频| 欧美tickling挠脚心丨vk| 国产午夜精品久久久久久久 | 国产黄色91视频| 精品在线播放免费| 美女视频黄久久| 91高清在线观看| 国产婷婷精品av在线| 久久99久久99小草精品免视看| 在线播放/欧美激情| 免费日本视频一区| 久久久欧美精品sm网站| 精品一区二区精品| 国产精品入口麻豆九色| 在线精品视频一区二区| 午夜电影久久久| 欧美国产精品一区二区| 欧洲一区在线电影| 国内久久精品视频| 日日夜夜免费精品| 色菇凉天天综合网| 日韩高清不卡在线| 亚洲欧洲综合另类| 精品入口麻豆88视频| 91蜜桃免费观看视频| 麻豆91在线看| 日日摸夜夜添夜夜添精品视频| wwwwxxxxx欧美| 欧美肥胖老妇做爰| 欧美日韩一区成人| 欧美色国产精品| 另类的小说在线视频另类成人小视频在线 | 污片在线观看一区二区| 国产精品大尺度| 国产精品国产精品国产专区不片| 色婷婷激情一区二区三区| 视频一区视频二区中文字幕| 亚洲三级电影全部在线观看高清| 玉足女爽爽91| 亚洲国产日日夜夜| 亚洲成人av资源| 首页国产丝袜综合| 精品伊人久久久久7777人| 老司机一区二区| 成人污视频在线观看| 在线中文字幕一区| 日韩经典中文字幕一区| 93久久精品日日躁夜夜躁欧美| 精品国产一区久久| 91精品一区二区三区久久久久久 | 日韩av中文字幕一区二区三区 | 成人h精品动漫一区二区三区| 色哟哟欧美精品| 国产区在线观看成人精品| 欧美r级在线观看| 1区2区3区欧美| 成人深夜视频在线观看| 欧美狂野另类xxxxoooo| 亚洲日本va午夜在线影院| 国产成人亚洲精品狼色在线| 欧美日韩成人高清| 亚洲激情自拍偷拍| 丁香婷婷综合五月| 久久久久久**毛片大全| 日韩成人一级片| 欧美色男人天堂| 日韩一区二区三区在线| 国产日韩欧美高清| 国产成人午夜99999| 日韩欧美成人午夜| 天天综合日日夜夜精品| 在线亚洲高清视频| 亚洲女厕所小便bbb| 成人视屏免费看| 亚洲男人天堂av网| 精品久久久影院| 极品少妇xxxx精品少妇偷拍| 色婷婷久久久久swag精品| xf在线a精品一区二区视频网站| 亚洲国产成人tv| 欧美男男青年gay1069videost| 国产拍欧美日韩视频二区| 国产综合一区二区| 国产视频视频一区| 免费在线成人网| 日韩精品一区二区三区蜜臀| 狠狠色丁香婷婷综合久久片| 欧美精品一区二区三区在线播放| 国产高清在线观看免费不卡| 国产三级欧美三级| 91亚洲精品久久久蜜桃| 亚洲一区二区三区四区在线免费观看 | 国产99精品视频| 亚洲蜜臀av乱码久久精品| 欧美日韩亚洲综合在线 | 久久理论电影网| 欧美日韩一区二区在线视频| 精品亚洲aⅴ乱码一区二区三区| 色香色香欲天天天影视综合网| 亚洲视频网在线直播| 欧美一级黄色片| 色老头久久综合| 九九国产精品视频| 午夜电影一区二区| 国产欧美日韩综合精品一区二区| 成人av午夜电影| 日韩国产精品91| 中文字幕日韩一区二区| 久久综合九色综合欧美亚洲| gogo大胆日本视频一区| 国产精品一区二区不卡| 丝袜美腿亚洲色图| 亚洲资源在线观看| 亚洲一区二区三区激情| 精品久久人人做人人爰| 久久久亚洲精品一区二区三区| 久久人人爽人人爽| 亚洲欧洲精品一区二区精品久久久 | 日韩一区中文字幕| 亚洲精品第一国产综合野| 亚洲国产成人91porn| 免费在线观看日韩欧美| 成人免费视频视频| 精品视频在线免费看| 欧美激情一区二区在线| 一区二区三区日韩在线观看| 久久精品国产一区二区| 国产成人三级在线观看| 国内精品久久久久影院薰衣草 |