?? calc_mpe.m
字號:
function [mpe, ll] = calc_mpe(engine, evidence, break_ties)% CALC_MPE Computes the most probable explanation of the evidence% [mpe, ll] = calc_mpe_given_inf_engine(engine, evidence, break_ties)%% INPUT% engine must support max-propagation% evidence{i} is the observed value of node i, or [] if hidden% break_ties is optional. If 1, we will force ties to be broken consistently% by calling enter_evidence N times.%% OUTPUT% mpe{i} is the most likely value of node i (cell array!)% ll is the log-likelihood of the globally best assignment%% This currently only works when all hidden nodes are discreteif nargin < 3, break_ties = 0; end[engine, ll] = enter_evidence(engine, evidence, 'maximize', 1);observed = ~isemptycell(evidence);if 0 % fgraphs don't support bnet_from_engineonodes = find(observed);bnet = bnet_from_engine(engine);pot_type = determine_pot_type(bnet, onodes);assert(pot_type == 'd');endscalar = 1;evidence = evidence(:); % hack to handle unrolled DBNsN = length(evidence);mpe = cell(1,N);for i=1:N m = marginal_nodes(engine, i); % observed nodes are all set to 1 inside the inference engine, so we must undo this if observed(i) mpe{i} = evidence{i}; else mpe{i} = argmax(m.T); % Bug fix by Ron Zohar, 8/15/01 % If there are ties, we must break them as follows (see Jensen96, p106) if break_ties evidence{i} = mpe{i}; [engine, ll] = enter_evidence(engine, evidence, 'maximize', 1); end end if length(mpe{i}) > 1, scalar = 0; endendif nargout >= 2 bnet = bnet_from_engine(engine); ll = log_lik_complete(bnet, mpe(:));endif 0 % scalar mpe = cell2num(mpe);end
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -