亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? tfdemo3.m

?? matlab 時頻分析工具, 好用的
?? M
字號:
%TFDEMO3 Demonstration on linear time-frequency representations.  	 
%	Time-Frequency Toolbox demonstration.
%
%	See also TFDEMO.

%	O. Lemoine - May 1996. 
%	Copyright (c) CNRS.

clc; zoom on; 
echo on;

% The Short-Time Fourier Transform
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
% In order to introduce time-dependency in the Fourier transform, a simple
% and intuitive solution consists in pre-windowing the signal x(u) around a
% particular time t, calculating its Fourier transform, and doing that for
% each time instant t. The resulting transform is called the Short-Time 
% Fourier Transform (STFT).
%
% Let us have a look at the result obtained by applying the STFT on a
% speech signal. The signal we consider contains the word 'GABOR' recorded 
% on 338 points with a sampling frequency of 1 kHz (with respect to the 
% Shannon criterion).

echo off
DirectoryStr='';
while (exist([DirectoryStr 'gabor.mat'])==0),
 fprintf('I can''t find %s\n', [DirectoryStr 'gabor.mat']);
 DirectoryStr=input('name of the directory where gabor.mat is : ','s');
end;
eval(['load ' DirectoryStr 'gabor.mat']);
echo on

time=0:337; 
clf; subplot(211); plot(time,gabor); xlabel('Time [ms]'); grid

% Now let us have a look at the Fourier transform of it :

dsp=fftshift(abs(fft(gabor)).^2); subplot(212); 
freq=(-169:168)/338*1000; plot(freq,dsp); xlabel('Frequency [Hz]'); grid

% We can not say from this representation what part of the word is
% responsible for that peak around 140 Hz. 
%
% Press any key to continue...
 
pause; clc;
 
% Now if we look at the squared modulus of the STFT of this signal, 
% using a hamming analysis window of 85 points, we can see some interesting
% features (the time-frequency matrix is loaded from the MAT-file because 
% it takes a long time to be calculated ; we represent only the frequency 
% domain where the signal is present) :
		
clf; tfrsp(gabor,1:338,256,window(61,'hanning'),1); 
% contour(time,(0:127)/256*1000,log10(tfr)); grid
xlabel('Time [ms]'); ylabel('Frequency [Hz]'); 
title('Squared modulus of the STFT of the word GABOR');

% The first pattern in the time-frequency plane, located between 30ms and
% 60ms, and centered around 150Hz, corresponds to the first syllable
% 'GA'. The second pattern, located between 150ms and 250ms, corresponds to
% the last syllable 'BOR', and we can see that its mean frequency is
% decreasing from 140Hz to 110Hz with time. Harmonics corresponding to these
% two fondamental signals are also present at higher frequencies, but with a
% lower amplitude.
%
% Press any key to continue...
 
pause; clc;
 
% To illustrate the tradeoff which exists for the STFT between time and 
% frequency resolutions, whatever is the short time analysis window h, we 
% consider two extreme cases : 
% - the first one corresponds to a perfect time resolution : the analysis 
% window h(t) is chosen as a Dirac impulse :

sig=amgauss(128).*fmlin(128); h=1;
tfrstft(sig,1:128,128,h);

% The signal is perfectly localized in time (a section for a given 
% frequency of the squared modulus of the STFT corresponds exactly to the 
% squared modulus of the signal), but the frequency resolution is null.     
%
% Press any key to continue...
 
pause; 

% - the second is that of perfect frequency resolution , obtained with a
% constant window :

h=ones(127,1);
tfrstft(sig,1:128,128,h);

% Here the STFT reduces to the Fourier transform (except on the sides, 
% because of the finite length of h), and does not provides any time 
% resolution.  
%    
% Press any key to continue...
 
pause; clc

% To illustrate the influence of the shape and length of the analysis
% window h, we consider two transient signals having the same gaussian
% amplitude and constant frequency, with different arrival times :

sig=atoms(128,[45,.25,32,1;85,.25,32,1],0);

% Here is the result obtained with a Hamming analysis window of 65 
% points :

h=window(65,'hamming');
tfrstft(sig,1:128,128,h);

% The frequency-resolution is very good, but it is almost impossible to
% discriminate the two components in time. 
%    
% Press any key to continue...
 
pause; clc

% If we now consider a short Hamming window of 17 points,

h=window(17,'hamming');
tfrstft(sig,1:128,128,h);

% the frequency resolution is poorer, but the time-resolution is 
% sufficiently good to distinguish the two components. 
%    
% Press any key to continue...
 
pause; clc; clf

% The Gabor Representation 
%~~~~~~~~~~~~~~~~~~~~~~~~~~
% The reconstruction (synthesis) formula of the STFT given in the 
% discrete case defines the Gabor representation. Let us consider the 
% Gabor coefficients of a linear chirp of N1=256 points at the critical 
% sampling case, and for a gaussian window of Ng=33 points :

N1=256; Ng=33; Q=1; % degree of oversampling.
sig=fmlin(N1); g=window(Ng,'gauss'); g=g/norm(g);
[tfr,dgr,h]=tfrgabor(sig,16,Q,g);

% (tfrgabor generates as first output the squared modulus of the Gabor
% representation, as second output the complex Gabor representation, and 
% as third output the biorthonormal window). When we look at the
% biorthonormal window h,

plot(h); axis([1 256 -0.3 0.55]); grid; title('Biorthonormal window'); 

% we can see how "bristling" this function is. 
%    
% Press any key to continue...
 
pause; clc

% The corresponding Gabor decomposition contains all the information about 
% sig, but is not easy to interpret :

t=1:16; f=linspace(0,0.5,8); imagesc(t,f,tfr(1:8,:));  grid
xlabel('Time'); ylabel('Normalized frequency'); axis('xy'); 
title('Squared modulus of the Gabor coefficients');

% Press any key to continue...
 
pause;

% If we now consider a degree of oversampling of Q=4 (there are four times
% more Gabor coefficients than signal samples), the biorthogonal function is
% smoother (the bigger Q, the closer h from g),

Q=4; [tfr,dgr,h]=tfrgabor(sig,32,Q,g);
plot(h); title('Biorthonormal window'); axis([1 256 -0.01 0.09]); grid; 

% press any key to continue...
 
pause; 

% and the Gabor representation is much more readable :

t=1:32; f=linspace(0,0.5,16); imagesc(t,f,tfr(1:16,:)); axis('xy'); 
xlabel('Time'); ylabel('Normalized frequency');  grid
title('Squared modulus of the Gabor coefficients');

% Press any key to continue...
 
pause; clc; 

% From atomic decompositions to energy distributions
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
% The spectrogram
%"""""""""""""""""
% If we consider the squared modulus of the STFT, we obtain a spectral
% energy density of the locally windowed signal x(u) h*(u-t), which 
% defines the spectrogram.
% To illustrate the resolution tradeoff of the spectrogram and its
% interference structure, we consider a two-component signal composed of 
% two parallel chirps :

sig=fmlin(128,0,0.4)+fmlin(128,0.1,0.5);
h1=window(23,'gauss'); figure(1); tfrsp(sig,1:128,128,h1);

h2=window(63,'gauss'); figure(2); tfrsp(sig,1:128,128,h2);

%print -deps EPS/At4fig2

% In these two cases, the signals sig1 and sig2 are not sufficiently 
% distant to have distinct terms in the time-frequency plane, whatever the 
% window length is. Consequently, interference terms are present, and 
% disturb the readability of the time-frequency representation. 
%
% Press any key to continue...
 
pause; clc; 

% If we consider more distant components,

sig=fmlin(128,0,0.3)+fmlin(128,0.2,0.5);
h1=window(23,'gauss'); figure(1); tfrsp(sig,1:128,128,h1);
h2=window(63,'gauss'); figure(2); tfrsp(sig,1:128,128,h2);

% the two auto-spectrograms do not overlap and no interference term
% appear. We can also see the effect of a short window (h1) and a long
% window (h2) on the time-frequency resolution. In the present case, the 
% long window h2 is preferable since as the frequency progression is not
% very fast, the quasi-stationary assumption will be correct over h2 (so 
% time resolution is not as important as frequency resolution in this case) 
% and the frequency resolution will be quite good ; whereas if the window 
% is short (h1), the time resolution will be good, which is not very useful, 
% and the frequency resolution will be poor.
%
% Press any key to continue...
 
pause; clc; close;

% The scalogram
%"""""""""""""""
% A similar distribution to the spectrogram can be defined in the wavelet
% case. The squared modulus of the continuous wavelet transform also 
% defines an energy distribution which is known as the scalogram.
% As for the wavelet transform, time and frequency resolutions of the
% scalogram are related via the Heisenberg-Gabor principle : time and
% frequency resolutions depend on the considered frequency. To illustrate
% this point, we represent the scalograms of two different signals. The
% M-file tfrscalo.m generates this representation. The chosen wavelet is a
% Morlet wavelet of 12 points. The first signal is a Dirac pulse at time
% t0=64 :

sig1=anapulse(128);
tfrscalo(sig1,1:128,6,0.05,0.45,64);

% This figure shows that the influence of the signal's behavior around 
% t=t0 is limited to a cone in the time-scale plane (which is more visible 
% if you choose the logarithmic scale is the menu) : it is "very" localized 
% around t0 for small scales (large frequencies), and less and less 
% localized as the scale increases (as the frequency decreases).
%
% Press any key to continue...
 
pause; clc; 

% The second signal is the sum of two sinusoids of different frequencies :

sig2=fmconst(128,.15)+fmconst(128,.35);
tfrscalo(sig2,1:128,6,0.05,0.45,128);
 
% Here again, we notice that the frequency resolution is clearly a function
% of the frequency : it increases with nu.
%
% Press any key to end this demonstration

pause;
echo off

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
久久国产精品色婷婷| 亚洲第一狼人社区| 欧美电影免费观看高清完整版在线 | 久久综合视频网| 欧美一级黄色录像| 欧美一级黄色大片| 91.com在线观看| 欧美精品日韩精品| 色香色香欲天天天影视综合网| 成人美女视频在线观看| 国内外成人在线| 国产主播一区二区三区| 国产精品1024久久| 成人性视频网站| 波多野结衣在线一区| 99精品视频一区| 色综合天天天天做夜夜夜夜做| 91一区二区三区在线播放| 成人国产一区二区三区精品| 99在线精品免费| 欧日韩精品视频| 欧美一区二区日韩| 国产欧美一区二区在线| 18欧美乱大交hd1984| 亚洲123区在线观看| 美女免费视频一区| 成人av资源网站| 欧美日韩一区二区三区在线看| 日韩午夜激情电影| 国产精品国产三级国产普通话99| 一区二区三区四区激情| 青青草97国产精品免费观看 | 欧美成人性战久久| 国产精品妹子av| 亚洲一级二级三级| 韩国av一区二区| 欧美综合亚洲图片综合区| 欧美成人三级电影在线| 国产精品久线在线观看| 日本少妇一区二区| 91小视频免费看| 欧美不卡一二三| 一区二区三区欧美在线观看| 久久99精品国产.久久久久久| 99久久夜色精品国产网站| 欧美精品色一区二区三区| 国产女人18毛片水真多成人如厕| 天天综合天天做天天综合| caoporn国产一区二区| 日韩一区二区三区四区 | 色88888久久久久久影院野外| 日韩一区二区精品在线观看| 综合久久国产九一剧情麻豆| 日韩国产欧美在线观看| 99精品国产91久久久久久| 欧美一级免费大片| 亚洲伦在线观看| 国产精品一区二区视频| 久久亚洲免费视频| 亚洲一区二区中文在线| 成人免费毛片嘿嘿连载视频| 日韩欧美一级在线播放| 婷婷亚洲久悠悠色悠在线播放 | 亚洲激情网站免费观看| 成人性生交大片| 精品成人免费观看| 美女任你摸久久| 欧美丰满美乳xxx高潮www| 一区二区不卡在线播放| av电影天堂一区二区在线观看| 久久久综合激的五月天| 精品一区二区在线看| 日韩精品中文字幕在线一区| 奇米精品一区二区三区在线观看一| 91极品视觉盛宴| 亚洲国产视频一区| 在线观看日韩av先锋影音电影院| 成人免费在线视频观看| 99久久伊人网影院| 综合久久一区二区三区| 色妹子一区二区| 一区二区三区日韩欧美| 欧美日韩在线免费视频| 亚洲国产成人av| 在线视频欧美精品| 亚洲1区2区3区视频| 91精品欧美综合在线观看最新| 亚洲va在线va天堂| 欧美美女一区二区| 日韩精品亚洲专区| 精品处破学生在线二十三| 国产高清久久久| 亚洲三级在线观看| 欧美女孩性生活视频| 日韩二区三区四区| 国产调教视频一区| 91一区二区在线| 天涯成人国产亚洲精品一区av| 精品久久一区二区三区| 成人激情文学综合网| 一区二区在线观看视频| 欧美精品乱人伦久久久久久| 激情综合网av| 亚洲视频1区2区| 日韩欧美专区在线| 不卡免费追剧大全电视剧网站| 一区二区免费看| 日韩免费高清视频| www.欧美日韩国产在线| 性感美女久久精品| 久久久国产一区二区三区四区小说 | 亚洲精品国产a久久久久久| 欧美视频一区二| 久久电影网站中文字幕| 中文字幕日本乱码精品影院| 欧美在线不卡视频| 国产一区二区三区日韩| 一区二区三区四区乱视频| 久久免费精品国产久精品久久久久| 91亚洲精品一区二区乱码| 麻豆91精品视频| 亚洲人123区| 精品国产乱码久久久久久牛牛| 色婷婷激情综合| 国产主播一区二区| 偷拍一区二区三区| 17c精品麻豆一区二区免费| 欧美一区二区黄| 欧洲精品视频在线观看| 成人深夜福利app| 久久91精品久久久久久秒播| 一级中文字幕一区二区| 国产色婷婷亚洲99精品小说| 欧美少妇一区二区| 色综合久久天天| 国产丶欧美丶日本不卡视频| 日韩avvvv在线播放| 亚洲激情av在线| 国产精品国产三级国产a| 亚洲精品在线观看网站| 7777精品伊人久久久大香线蕉经典版下载 | 亚洲蜜桃精久久久久久久| 久久久久久亚洲综合影院红桃| 欧美久久久久久久久久| 91色九色蝌蚪| 成人精品小蝌蚪| 粉嫩av一区二区三区| 国产精品一区二区91| 国产在线视频一区二区三区| 裸体一区二区三区| 日本欧美肥老太交大片| 五月激情六月综合| 五月婷婷另类国产| 亚洲成a天堂v人片| 婷婷丁香激情综合| 天天综合网天天综合色| 日本欧洲一区二区| 久久精品av麻豆的观看方式| 久久精品国产亚洲高清剧情介绍| 美女视频一区二区| 韩国一区二区三区| 国产成人综合精品三级| 国产成人av影院| 成人黄动漫网站免费app| 91首页免费视频| 日韩一区二区三区在线| 欧美一区二区在线看| 精品国产免费久久| 国产亚洲一区二区三区在线观看 | 欧美国产日韩精品免费观看| 欧美极品aⅴ影院| 国产精品国模大尺度视频| 亚洲美女屁股眼交3| 丝袜国产日韩另类美女| 蜜臀久久99精品久久久久久9| 狠狠色综合日日| 成人国产亚洲欧美成人综合网| 色噜噜狠狠一区二区三区果冻| 欧美三级中文字幕在线观看| 日韩一区二区麻豆国产| 国产欧美日韩在线| 一区二区三区视频在线看| 亚洲国产aⅴ成人精品无吗| 美女看a上一区| 成人午夜激情视频| 欧美日韩激情在线| 欧美一区二区黄色| 国产精品五月天| 亚洲1区2区3区4区| 成人黄色777网| 制服丝袜激情欧洲亚洲| 国产精品视频免费看| 亚洲h动漫在线| 粉嫩av亚洲一区二区图片| 欧美日韩精品一区二区天天拍小说| 亚洲精品一区二区三区99| 一区二区三区蜜桃网| 国产一区二区三区四区在线观看| 99久久久免费精品国产一区二区| 9191精品国产综合久久久久久|