亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? tfdemo5.m

?? matlab 時頻分析工具, 好用的
?? M
字號:
%TFDEMO5 Affine class time-frequency distributions.
%	Time-Frequency Toolbox demonstration.
%
%	See also TFDEMO.

%	O. Lemoine - July 1996. 
%	Copyright (c) CNRS.

clc; zoom on; clf; 
echo on;

% The Affine class : presentation
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
% This class gathers all the quadratic time-frequency representations 
% which are covariant by translation in time and dilation. The WVD is
% an element of the affine class, provided that we introduce an 
% arbitrary non-zero frequency nu0, and identify the scale with the 
% inverse of the frequency : a=nu0/nu.
% The choice of an element in the affine class can be reduced to the 
% choice of an affine correlation kernel PI(t,nu). When PI is a 
% two-dimensional low-pass function, it plays the role of an affine
% smoothing function which tries to reduce the interferences generated 
% by the WVD.
%
% The scalogram 
%"""""""""""""""
%  A first example of affine distribution is given by the scalogram,
% which is the squared modulus of the wavelet transform. It is the affine
% counterpart of the spectrogram. As illustrated in the following example,
% the tradeoff between time and frequency resolutions encountered with the
% spectrogram is also present with the scalogram.
%  We analyze a signal composed of two gaussian atoms, one with a low 
% central frequency, and the other with a high one, with the scalogram 
% (Morlet wavelet) :

sig=atoms(128,[38,0.1,32,1;96,0.35,32,1]);
clf; tfrscalo(sig);
% The result obtained brings to the fore dependency, with regard to the 
% frequency, of the smoothing applied to the WVD, and consequently of the
% resolutions in time and frequency.
%
% Press any key to continue...
 
pause; clc; clf; 


% The affine smoothed pseudo Wigner distribution (ASPWVD)
%"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
%  One way to overcome the tradeoff between time and frequency resolutions
% of the scalogram is, as for the smoothed-pseudo-WVD, to use a smoothing
% function which is separable in time and frequency. The resulting
% distribution is called the affine smoothed pseudo WVD. It allows a 
% flexible choice of time and scale resolutions in an independent manner 
% through the choice of two windows g and h. 

echo off
continue=1;
fprintf('The next step requires patience. Do you want to skip it ?\n');
while (continue==1),
 answer=upper(input('y or n : ','s'));
 continue=~strcmp(answer,'Y') & ~strcmp(answer,'N');
end;
echo on

if (answer=='N'),
%  As for the SPWVD, the ASPWVD allows a continuous passage from the 
% scalogram to the WVD, under the condition that the smoothing functions 
% g and h are gaussian. The time-bandwidth product then goes from 1 
% (scalogram) to 0 (WVD), with an independent control of the time and 
% frequency resolutions. This is illustrated in the following example :

set(gca,'visible','off');
M=movsc2wv(128,15);
movie(M,5);

% Here again, the WVD gives the best resolutions (in time and in frequency),
% but presents the most important interferences, whereas the scalogram gives
% the worst resolutions, but with nearly no interferences ; and the affine
% smoothed-pseudo WVD allows to choose the best compromise between these two
% extremes.
%
end;
% Press any key to continue...
pause; clc; close

% The localized bi-frequency kernel (or affine Wigner) distributions
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
%  A useful subclass of the affine class consists in characterization
% functions which are perfectly localized on power laws or logarithmic laws
% in their bi-frequency representation. The corresponding time-scale 
% distributions are known as the localized bi-frequency kernel distributions.
% 
% The Bertrand distribution
%"""""""""""""""""""""""""""
%  If we further impose to these distributions the a priori requirements of
% time localization and unitarity, we obtain the Bertrand distribution. This
% distribution satisfies many properties, and is the only localized
% bi-frequency kernel distribution which localizes perfectly the hyperbolic
% group delay signals. To illustrate this property, consider the signal 
% obtained using the file gdpower.m (taken for k=0), and analyze it with 
% the file tfrbert.m :

sig=gdpower(128);
tfrbert(sig,1:128,0.01,0.22,128,1);
% Note that the distribution obtained is well localized on the hyperbolic
% group delay, but not perfectly : this comes from the fact that the file
% tfrbert.m works only on a subpart of the spectrum, between two bounds fmin
% and fmax.
%
% Press any key to continue...
 
pause; clc;

% The D-Flandrin distribution 
%"""""""""""""""""""""""""""""
%  If we now look for a localized bi-frequency kernel distribution which is
% real, localized in time and which validates the time-marginal property, 
% we obtain the D-Flandrin distribution. It is the only localized 
% bi-frequency kernel distribution which localizes perfectly signals having 
% a group delay in 1/sqrt(nu). This can be illustrated as following :

sig=gdpower(128,1/2);
tfrdfla(sig,1:128,0.01,0.22,128,1);
% Here again, the distribution is almost perfectly localized.
%
% Press any key to continue...
 
pause; clc;

% The active Unterberger distribution
%"""""""""""""""""""""""""""""""""""""
%  Finally, the only localized bi-frequency kernel distribution which
% localizes perfectly signals having a group delay in 1/nu^2 is the active
% Unterberger distribution :

sig=gdpower(128,-1);
tfrunter(sig,1:128,'A',0.01,0.22,172,1);
% Press any key to continue...
 
pause; clc;

% Relation with the ambiguity domain
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
%  When the signal under analysis can not be considered as narrow-band
% (i.e. when its bandwidth B is not negligible compared to its central
% frequency nu0), the narrow-band ambiguity function is no longer appropriate
% since the Doppler effect can not be approximated as a frequency-shift. We
% then consider a wide-band ambiguity function (WAF). It corresponds to 
% the wavelet transform of the signal x, whose mother wavelet is the signal
% x itself. It is then an affine correlation function, which measure the 
% similarity between the signal and its translated (in time) and dilated 
% versions. To see how it behaves on a practical example, let us consider an
% Altes signal :
	
sig=altes(128,0.1,0.45);
clf; ambifuwb(sig);

% The WAF is maximum at the origin of the ambiguity plane.  
%
% Press any key to continue...
 
pause; clc
  
% Interference structure
%~~~~~~~~~~~~~~~~~~~~~~~~
%  The interference structure of the localized bi-frequency kernel 
% distributions can be determined thanks to the following geometric 
% argument : two points (t1,nu1) and (t2,nu2) belonging to the trajectory 
% on which a distribution is localized interfere on a third point 
% (ti,nui) which is necessarily located on the same trajectory.
%  To illustrate this interference geometry, let us consider the case of a
% signal with a sinusoidal frequency modulation :

[sig,ifl]=fmsin(128);

% The file plotsid.m allows one to construct the interferences of an affine
% Wigner distribution perfectly localized on a power-law group-delay
% (specifying k), for a given instantaneous frequency law (or the
% superposition of different instantaneous frequency laws). For example, if
% we consider the case of the Bertrand distribution (k=0),

plotsid(1:128,ifl,0);

% we obtain an interference structure completely different from the one
% obtained for the Wigner-Ville distribution (k=2) :
%
% press any key to continue...
 
pause;

plotsid(1:128,ifl,2);

% For the active Unterberger distribution (k=-1), the result is the
% following : 
%
% press any key to continue...
 
pause;

plotsid(1:128,ifl,-1);
 
% Press any key to continue...
 
pause; clc

% The pseudo affine Wigner distributions
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
%   The affine Wigner distributions show great potential as flexible
% tools for time-varying spectral analysis. However, as some distributions of
% the Cohen's class, they present two major practical limitations : first the
% entire signal enters into the calculation of these distributions at every
% point (t,nu), and second, due to their nonlinearity, interference
% components arise between each pair of signal components. To overcome these
% limitations, a set of (smoothed) pseudo affine Wigner distributions has
% been introduced.
%  Here are two examples of such distributions, analyzed on a real 
% echolocation signal from a bat :

echo off
DirectoryStr='';
while (exist([DirectoryStr 'bat.mat'])==0),
 fprintf('I can''t find %s\n', [DirectoryStr 'gabor.mat']);
 DirectoryStr=input('name of the directory where bat.mat is : ','s');
end;
eval(['load ' DirectoryStr 'bat.mat']);
echo on

N=2048; sig=hilbert(bat(400+(1:N))');

% The affine smoothed pseudo Wigner distribution 
%------------------------------------------------

figure(1); tfrwv(sig,1:8:N,256); 
figure(2); tfrspaw(sig,1:8:N,2,24,0,0.1,0.4,256,1); 

% On the left, the WVD presents interference terms because of the
% non-linearity of the frequency modulation. On the right, the affine
% frequency smoothing operated by the affine smoothed pseudo Wigner
% distribution almost perfectly suppressed the interference terms.
%
% Press any key to continue...
 
pause; clc

% The pseudo Bertrand distribution
%----------------------------------

figure(1); tfrbert(sig,1:8:N,0.1,0.4,256,1);
figure(2); tfrspaw(sig,1:8:N,0,32,0,0.1,0.4,256,1); 

% The first plot represents the Bertrand distribution. The approximate
% hyperbolic group delay law of the bat signal explains the good result
% obtained with this distribution (compared to the WVD). However, it
% remains some interference terms, which are almost perfectly canceled
% on the second plot (pseudo Bertrand distribution).
%
% Press any key to end this demonstration

pause; close;
echo off

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
日韩免费视频一区二区| 色综合欧美在线视频区| 欧美一区二区久久| 奇米精品一区二区三区四区 | 美女网站色91| 欧美va在线播放| 国产伦精品一区二区三区在线观看| 欧美成人三级电影在线| 狠狠网亚洲精品| 国产亚洲欧美一级| 99久久er热在这里只有精品15 | 欧美极品另类videosde| 国产成人av一区二区三区在线 | 91在线观看污| 国产suv精品一区二区6| 国产日韩高清在线| 91香蕉视频mp4| 婷婷一区二区三区| 久久先锋影音av| 成人av电影在线网| 亚洲第一激情av| 精品国产乱码久久久久久蜜臀| 国产激情一区二区三区桃花岛亚洲| 国产日韩欧美综合在线| 在线观看亚洲一区| 美国毛片一区二区三区| 国产精品日产欧美久久久久| 欧美在线视频全部完| 九九热在线视频观看这里只有精品| 国产目拍亚洲精品99久久精品| 色综合一个色综合亚洲| 久久精品国产精品亚洲综合| 国产欧美精品一区| 欧美日韩精品欧美日韩精品| 国产九色sp调教91| 亚洲国产wwwccc36天堂| 国产日韩欧美在线一区| 欧美疯狂做受xxxx富婆| 成人av电影在线网| 久久se精品一区精品二区| 亚洲精品久久久蜜桃| 精品sm在线观看| 欧美精品高清视频| 91麻豆国产福利在线观看| 激情欧美一区二区三区在线观看| 亚洲精品精品亚洲| 国产亚洲精品精华液| 欧美精品色一区二区三区| 成人看片黄a免费看在线| 久热成人在线视频| 国产成人精品一区二区三区四区| 又紧又大又爽精品一区二区| 久久久国产精华| 欧美一区二区三区四区五区| 色综合色狠狠综合色| 丁香网亚洲国际| 天堂影院一区二区| 亚洲特级片在线| 久久久久久麻豆| 日韩欧美一区在线| 欧美视频完全免费看| 成人白浆超碰人人人人| 国产精品中文字幕日韩精品 | 国产精品青草综合久久久久99| 欧美精品一二三| 欧美丝袜丝交足nylons| 99久久精品国产网站| 成人性色生活片免费看爆迷你毛片| 日本午夜精品视频在线观看| 亚洲与欧洲av电影| 亚洲欧美日韩人成在线播放| 国产精品日韩成人| 亚洲国产精品成人久久综合一区| 日韩欧美资源站| 91精品黄色片免费大全| 91精选在线观看| 欧美久久久久免费| 欧美精品在线观看播放| 欧美精品三级在线观看| 欧美一二三四区在线| 777午夜精品免费视频| 欧美欧美午夜aⅴ在线观看| 欧美色视频一区| 亚洲欧美日韩一区| 亚洲色图在线播放| 亚洲精选一二三| 一区二区三区免费网站| 一区二区三区不卡视频在线观看| 亚洲欧美日韩国产成人精品影院| 成人免费一区二区三区视频| 亚洲欧美偷拍另类a∨色屁股| 日韩一区中文字幕| 亚洲另类春色校园小说| 亚洲妇女屁股眼交7| 日韩电影在线免费观看| 捆绑调教一区二区三区| 国产福利一区在线观看| 成人ar影院免费观看视频| 91蝌蚪porny九色| 精品视频999| 精品动漫一区二区三区在线观看| 久久久电影一区二区三区| 亚洲欧洲一区二区三区| 亚洲福利一区二区| 精品中文字幕一区二区| 波多野结衣在线aⅴ中文字幕不卡| fc2成人免费人成在线观看播放| 日本高清视频一区二区| 欧美一区二区三区日韩视频| 国产亚洲一区二区三区四区 | 久久久99精品免费观看| 中文字幕视频一区二区三区久| 亚洲一区二区三区视频在线播放 | 91在线免费看| 91精品国产入口| 中文无字幕一区二区三区| 一区二区三区在线视频观看| 麻豆精品在线视频| 99免费精品在线观看| 这里只有精品电影| 国产亚洲精品精华液| 亚洲成av人片在线观看无码| 国精品**一区二区三区在线蜜桃| 99久久精品免费看| 日韩欧美美女一区二区三区| 国产精品久久久久久久岛一牛影视 | 色综合色狠狠天天综合色| 91精品国产综合久久福利| 国产精品国产精品国产专区不片 | 国产精品乱子久久久久| 日本最新不卡在线| 色综合久久六月婷婷中文字幕| 欧美一级在线免费| 亚洲精品老司机| 岛国av在线一区| 69久久99精品久久久久婷婷| 最新高清无码专区| 国产麻豆日韩欧美久久| 欧美老年两性高潮| 亚洲另类在线制服丝袜| 成人中文字幕在线| 日韩欧美成人激情| 亚洲成a人在线观看| 97精品久久久午夜一区二区三区 | 国产一区二区免费视频| 欧美人与z0zoxxxx视频| 亚洲免费在线视频一区 二区| 国产揄拍国内精品对白| 欧美一级二级三级蜜桃| 亚洲午夜精品一区二区三区他趣| 成人午夜av影视| 久久久精品免费网站| 麻豆成人久久精品二区三区红| 欧美日韩一级片在线观看| 亚洲精品乱码久久久久久 | 91老司机福利 在线| 中文子幕无线码一区tr| 国产精品一区二区在线播放| 日韩美女一区二区三区| 日韩激情在线观看| 欧美精品久久久久久久多人混战 | 亚洲婷婷综合色高清在线| 国产原创一区二区| 久久伊99综合婷婷久久伊| 人妖欧美一区二区| 欧美一区二区人人喊爽| 日韩va亚洲va欧美va久久| 欧美日韩亚洲丝袜制服| 亚洲国产视频在线| 欧美日韩精品一区二区天天拍小说 | 成人精品电影在线观看| 国产亚洲一区二区在线观看| 国产呦精品一区二区三区网站| 欧美大胆人体bbbb| 国产一区欧美一区| 国产欧美日韩亚州综合 | 风流少妇一区二区| 中文一区二区在线观看| 成人久久久精品乱码一区二区三区| 久久久99精品久久| 白白色 亚洲乱淫| 亚洲伦理在线精品| 欧美日韩一区中文字幕| 日韩成人av影视| 2019国产精品| 99综合电影在线视频| 一区二区三区在线播| 欧美精品在线一区二区| 九色综合国产一区二区三区| 国产欧美精品一区二区色综合| 99久久99久久久精品齐齐| 一区二区三区四区精品在线视频| 欧美午夜影院一区| 日本免费在线视频不卡一不卡二| 精品久久免费看| 91亚洲精品乱码久久久久久蜜桃| 亚洲一二三区在线观看| 日韩女同互慰一区二区| 成人av动漫在线| 天天综合色天天|