亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? gatsp.cpp

?? 《游戲編程中的人工智能技術(shù)》一書中4
?? CPP
?? 第 1 頁(yè) / 共 3 頁(yè)
字號(hào):
#include "gaTSP.h"




//---------------------TestNumber-----------------------------
//
//	checks if a given integer is already contained in a vector
//	of integers.
//------------------------------------------------------------
bool TestNumber(const vector<int> &vec, const int &number)
{
	for (int i=0; i<vec.size(); ++i)
	{
		if (vec[i] == number)
		{
			return true;
		}
	}

	return false;
}




////////////////////////////////////////////////////////////////////////////////

//---------------------GrabPermutation----------------------
//
//	given an int, this function returns a vector containing
//	a random permutation of all the integers up to the supplied
//	parameter.
//------------------------------------------------------------
vector<int> SGenome::GrabPermutation(int &limit)
{
	vector<int> vecPerm;
	
	for (int i=0; i<limit; i++)
	{
		//we use limit-1 because we want ints numbered from zero
		int NextPossibleNumber = RandInt(0, limit-1);

		while(TestNumber(vecPerm, NextPossibleNumber))
		{
			NextPossibleNumber = RandInt(0, limit-1);
		}

		vecPerm.push_back(NextPossibleNumber);
	}

	return vecPerm;
}




/////////////////////////////////////////////////////////////////////////////


//-----------------------CalculatePopulationsFitness--------------------------
//
//	calculates the fitness of each member of the population, updates the
//	fittest, the worst, keeps a sum of the total fittness scores and the
//	average fitness score of the population (most of these stats are required
//	when we apply pre-selection fitness scaling.
//-----------------------------------------------------------------------------
void CgaTSP::CalculatePopulationsFitness()
{

	for (int i=0; i<m_iPopSize; ++i)
	{

		double TourLength = m_pMap->GetTourLength(m_vecPopulation[i].vecCities);

		m_vecPopulation[i].dFitness = TourLength;
		
		//keep a track of the shortest route found each generation
		if (TourLength < m_dShortestRoute)
		{
			m_dShortestRoute = TourLength;
		}
		
		//keep a track of the worst tour each generation
		if (TourLength > m_dLongestRoute)
		{
			m_dLongestRoute = TourLength;
		}

	}//next chromo

	//Now we have calculated all the tour lengths we can assign
	//the fitness scores
	for (i=0; i<m_iPopSize; ++i)
	{
		m_vecPopulation[i].dFitness = m_dLongestRoute - m_vecPopulation[i].dFitness;
	}

	//calculate values used in selection
	CalculateBestWorstAvTot();

}

//-----------------------CalculateBestWorstAvTot-----------------------	
//
//	calculates the fittest and weakest genome and the average/total 
//	fitness scores
//---------------------------------------------------------------------
void CgaTSP::CalculateBestWorstAvTot()
{
	m_dTotalFitness = 0;
	
	double HighestSoFar = -9999999;
	double LowestSoFar  = 9999999;
	
	for (int i=0; i<m_iPopSize; ++i)
	{
		//update fittest if necessary
		if (m_vecPopulation[i].dFitness > HighestSoFar)
		{
			HighestSoFar	 = m_vecPopulation[i].dFitness;
			
			m_iFittestGenome = i;

			m_dBestFitness	 = HighestSoFar;
		}
		
		//update worst if necessary
		if (m_vecPopulation[i].dFitness < LowestSoFar)
		{
			LowestSoFar = m_vecPopulation[i].dFitness;
			
			m_dWorstFitness = LowestSoFar;
		}
		
		m_dTotalFitness	+= m_vecPopulation[i].dFitness;
		
		
	}//next chromo
	
	m_dAverageFitness = m_dTotalFitness / m_iPopSize;

  //if all the fitnesses are zero the population has converged
  //to a grpoup of identical genomes so we should stop the run
  if (m_dAverageFitness == 0)
  {
    m_dSigma = 0;
  }

}

//-----------------------------FitnessScaleRank----------------------
//
//	This type of fitness scaling sorts the population into ascending
//	order of fitness and then simply assigns a fitness score based 
//	on its position in the ladder. (so if a genome ends up last it
//	gets score of zero, if best then it gets a score equal to the size
//	of the population. 
//---------------------------------------------------------------------
void CgaTSP::FitnessScaleRank(vector<SGenome> &pop)
{
	//sort population into ascending order
	if (!m_bSorted)
	{
		sort(pop.begin(), pop.end());

		m_bSorted = true;
	}

	//now assign fitness according to the genome's position on
	//this new fitness 'ladder'
	for (int i=0; i<pop.size(); i++)
	{
		pop[i].dFitness = i;
	}

	//recalculate values used in selection
	CalculateBestWorstAvTot();
}


//----------------------------- FitnessScaleSigma ------------------------
//
//  Scales the fitness using sigma scaling based on the equations given
//  in Chapter 5 of the book.
//------------------------------------------------------------------------
void CgaTSP::FitnessScaleSigma(vector<SGenome> &pop)
{
  double RunningTotal = 0;

  //first iterate through the population to calculate the standard
  //deviation
  for (int gen=0; gen<pop.size(); ++gen)
  {
    RunningTotal += (pop[gen].dFitness - m_dAverageFitness) *
                    (pop[gen].dFitness - m_dAverageFitness);
  }

  double variance = RunningTotal/(double)m_iPopSize;

  //standard deviation is the square root of the variance
  m_dSigma = sqrt(variance);

  //now iterate through the population to reassign the fitness scores
  for (gen=0; gen<pop.size(); ++gen)
  {
    double OldFitness = pop[gen].dFitness;

    pop[gen].dFitness = (OldFitness - m_dAverageFitness) /
                                    (2 * m_dSigma);
  }

  //recalculate values used in selection
	CalculateBestWorstAvTot();

}   

//------------------------- FitnessScaleBoltzmann ------------------------
//
//  This function applies Boltzmann scaling to a populations fitness
//  scores as described in Chapter 5.
//  The static value Temp is the boltzmann temperature which is reduced
//  each generation by a small amount. As Temp decreases the difference 
//  spread between the high and low fitnesses increases.
//------------------------------------------------------------------------
void CgaTSP::FitnessScaleBoltzmann(vector<SGenome> &pop)
{

  //reduce the temp a little each generation
  m_dBoltzmannTemp -= BOLTZMANN_DT;

  //make sure it doesn't fall below minimum value
  if (m_dBoltzmannTemp< BOLTZMANN_MIN_TEMP)
  {
    m_dBoltzmannTemp = BOLTZMANN_MIN_TEMP;
  }

  //first calculate the average fitness/Temp
  double divider = m_dAverageFitness/m_dBoltzmannTemp;

  //now iterate through the population and calculate the new expected
  //values
  for (int gen=0; gen<pop.size(); ++gen)
  {
    double OldFitness = pop[gen].dFitness;

    pop[gen].dFitness = (OldFitness/m_dBoltzmannTemp)/divider;
  }

  //recalculate values used in selection
	CalculateBestWorstAvTot();
}

//--------------------------FitnessScale----------------------------------
//
//  This is simply a switch statement to choose a selection method
//  based on the user preference
//------------------------------------------------------------------------
void CgaTSP::FitnessScaleSwitch()
{
  switch(m_ScaleType)
  {
  case NONE:

    break;

  case SIGMA:
    
    FitnessScaleSigma(m_vecPopulation);

    break;

  case BOLTZMANN:
    
    FitnessScaleBoltzmann(m_vecPopulation);

    break;

  case RANK:
    
    FitnessScaleRank(m_vecPopulation);

    break;
  }
}
//-------------------------GrabNBest----------------------------------
//
//	This works like an advanced form of elitism by inserting NumCopies
//  copies of the NBest most fittest genomes into a population vector
//--------------------------------------------------------------------
void CgaTSP::GrabNBest(int				      NBest,
					             const int        NumCopies,
					             vector<SGenome>	&vecNewPop)
{
	//first we need to sort our genomes
	if (!m_bSorted)
	{
		sort(m_vecPopulation.begin(), m_vecPopulation.end());

		m_bSorted = true;
	}

	//now add the required amount of copies of the n most fittest 
	//to the supplied vector
	while(NBest--)
	{
		for (int i=0; i<NumCopies; ++i)
		{
			vecNewPop.push_back(m_vecPopulation[(m_iPopSize - 1) - NBest]);
		}
	}
}

//--------------------------RouletteWheelSelection----------------------
//
//	selects a member of the population by using roulette wheel selection
//	as described in the text.
//-----------------------------------------------------------------------
SGenome& CgaTSP::RouletteWheelSelection()
{
	double fSlice	= RandFloat() * m_dTotalFitness;
	
	double cfTotal	= 0.0;
	
	int	SelectedGenome = 0;
	
	for (int i=0; i<m_iPopSize; ++i)
	{
		
		cfTotal += m_vecPopulation[i].dFitness;
		
		if (cfTotal > fSlice) 
		{
			SelectedGenome = i;
			
			break;
		}
	}
	
	return m_vecPopulation[SelectedGenome];
}

//----------------------- SUSSelection -----------------------------------
//
//  This function performs Stochasitic Universal Sampling.
//
//  SUS uses N evenly spaced hands which are spun once to choose the 
//  new population. As described in chapter 5.
//------------------------------------------------------------------------
void CgaTSP::SUSSelection(vector<SGenome> &NewPop)
{
  //this algorithm relies on all the fitnesses to be positive so
  //these few lines check and adjust accordingly (in this example
  //Sigma scaling can give negative fitnesses
  if (m_dWorstFitness < 0)
  {
    //recalculate
    for (int gen=0; gen<m_vecPopulation.size(); ++gen)
    {
      m_vecPopulation[gen].dFitness += fabs(m_dWorstFitness);
    }

    CalculateBestWorstAvTot();
  }

  int curGen = 0;
  double sum = 0;

  //NumToAdd is the amount of individuals we need to select using SUS.
  //Remember, some may have already been selected through elitism
  int NumToAdd = m_iPopSize - NewPop.size();

  //calculate the hand spacing
  double PointerGap = m_dTotalFitness/(double)NumToAdd;

  //choose a random start point for the wheel
  float ptr = RandFloat() * PointerGap;

	while (NewPop.size() < NumToAdd)
  {
	  for(sum+=m_vecPopulation[curGen].dFitness; sum > ptr; ptr+=PointerGap)
    {
	     NewPop.push_back(m_vecPopulation[curGen]);

       if( NewPop.size() == NumToAdd)
       {
         return;
       }
    }

    ++curGen;
  }
}


//---------------------------- TournamentSelection -----------------
//
//  performs standard tournament selection given a number of genomes to
//  sample from each try.
//------------------------------------------------------------------------
SGenome& CgaTSP::TournamentSelection(int N)
{
  double BestFitnessSoFar = 0;
  
  int ChosenOne = 0;

  //Select N members from the population at random testing against 
  //the best found so far

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲一区二区偷拍精品| 久久久久久久久久久久久夜| 久久精品亚洲国产奇米99| 一区二区视频在线看| 香蕉成人啪国产精品视频综合网 | 日本一二三不卡| 中文字幕一区二区三区不卡在线| 欧美成人精品二区三区99精品| 欧美一区二区女人| 国产精品女主播在线观看| 亚洲电影在线播放| 极品销魂美女一区二区三区| 99久久国产免费看| 在线播放日韩导航| 国产精品理论在线观看| 图片区小说区国产精品视频| 国产综合色视频| 一本到一区二区三区| 日韩免费在线观看| 亚洲欧洲三级电影| 欧美aaa在线| 色婷婷av一区| 国产肉丝袜一区二区| 亚洲成人动漫精品| 成人高清在线视频| 欧美大片一区二区| 亚洲一区二区黄色| 成人免费视频视频在线观看免费 | 亚洲三级理论片| 久久成人久久鬼色| 色呦呦日韩精品| 久久婷婷综合激情| 日韩成人午夜电影| 色88888久久久久久影院野外| 精品成人一区二区三区四区| 亚洲在线视频网站| 99久久er热在这里只有精品15| 久久综合色鬼综合色| 爽好多水快深点欧美视频| av中文一区二区三区| 日韩精品中文字幕在线一区| 亚洲综合999| 91原创在线视频| 欧美国产综合色视频| 久久精品99国产国产精| 欧美性感一类影片在线播放| 中文字幕在线观看一区二区| 国模套图日韩精品一区二区| 3d成人动漫网站| 亚洲国产视频网站| 色噜噜久久综合| 国产精品狼人久久影院观看方式| 狠狠色丁香婷综合久久| 欧美欧美欧美欧美| 亚洲午夜精品在线| 欧美亚洲国产bt| 亚洲精品日韩专区silk| caoporn国产精品| 国产欧美日韩视频一区二区| 91福利国产成人精品照片| 欧美激情中文不卡| 国产高清精品网站| 久久先锋影音av鲁色资源网| 免费成人在线视频观看| 日韩一区二区三区在线观看| 午夜精品久久久久久久久久| 欧美亚洲自拍偷拍| 一级精品视频在线观看宜春院| 成人黄页在线观看| 欧美天堂亚洲电影院在线播放| 偷偷要91色婷婷| 欧美电影一区二区| 亚洲精品在线三区| 一区二区三区日韩欧美| 国产精品69久久久久水密桃| 欧美视频一区二区三区在线观看| 综合久久久久久久| 99re热这里只有精品视频| 国产精品国产三级国产a| 成人午夜私人影院| 自拍偷拍亚洲综合| 一本久久a久久精品亚洲| 一区二区日韩电影| 欧美精品欧美精品系列| 日本伊人午夜精品| 久久综合九色综合久久久精品综合 | 依依成人综合视频| 欧美日韩国产bt| 美女国产一区二区| 久久伊99综合婷婷久久伊| 大尺度一区二区| 亚洲黄色免费网站| 正在播放一区二区| 国产在线精品一区二区| 欧美激情一区二区三区全黄| 91浏览器打开| 日本亚洲天堂网| 久久精品欧美一区二区三区麻豆| 成人av片在线观看| 亚洲高清视频在线| 精品福利一二区| 99久久精品免费| 亚洲成人免费看| 26uuu亚洲| 91麻豆免费在线观看| 午夜精品成人在线| 亚洲精品一区二区三区蜜桃下载| 国产suv精品一区二区三区| 亚洲精品伦理在线| 日韩欧美你懂的| 99久久综合精品| 日本视频一区二区| 国产日韩成人精品| 欧美日韩国产经典色站一区二区三区| 麻豆精品视频在线| 18欧美乱大交hd1984| 欧美日本一区二区三区四区| 国产激情一区二区三区四区| 亚洲一区二区三区精品在线| 久久综合色婷婷| 欧美色国产精品| 岛国精品在线观看| 日韩电影在线看| 综合精品久久久| 26uuu精品一区二区在线观看| 91在线精品一区二区三区| 全部av―极品视觉盛宴亚洲| 国产精品狼人久久影院观看方式| 欧美精品在线一区二区| 成人晚上爱看视频| 欧美96一区二区免费视频| 中文字幕日韩av资源站| 欧美精品一区二区在线观看| 日本高清无吗v一区| 国产精品一区二区无线| 亚洲高清不卡在线观看| 国产精品另类一区| 日韩午夜激情av| 在线免费观看日本一区| 成人高清av在线| 国内精品伊人久久久久av一坑| 亚洲国产日韩在线一区模特 | 91视频91自| 国精产品一区一区三区mba视频| 夜夜精品浪潮av一区二区三区| 国产欧美精品一区二区色综合朱莉 | 国产精品三级久久久久三级| 日韩一区二区三区免费看| 欧美亚洲动漫精品| 成人av集中营| 国产一区二区视频在线播放| 男女性色大片免费观看一区二区 | 一本到一区二区三区| 国产成人精品一区二区三区四区| 奇米四色…亚洲| 亚洲h动漫在线| 一区二区三区视频在线看| 中文字幕一区二区三区四区不卡| 欧美va日韩va| 6080日韩午夜伦伦午夜伦| 欧美午夜精品久久久久久孕妇| aaa亚洲精品一二三区| 国产一区二区伦理| 九色porny丨国产精品| 男女男精品网站| 日本美女一区二区| 偷拍日韩校园综合在线| 亚洲亚洲人成综合网络| 亚洲人精品午夜| 综合色天天鬼久久鬼色| 国产精品传媒视频| 国产精品视频一二三区| 欧美激情一区二区三区蜜桃视频| 久久女同精品一区二区| 欧美精品一区二区三区视频| 日韩欧美的一区二区| 欧美一级精品大片| 日韩一卡二卡三卡国产欧美| 欧美高清激情brazzers| 欧美日韩mp4| 欧美日韩一级视频| 欧美丰满嫩嫩电影| 91精品国产综合久久小美女| 在线成人免费观看| 91精品国产综合久久久久久久久久| 欧美综合久久久| 欧美日韩国产一级片| 欧美日韩一区二区在线观看 | 日本美女视频一区二区| 美女爽到高潮91| 麻豆免费精品视频| 国内精品不卡在线| 国产成人综合在线| va亚洲va日韩不卡在线观看| 9l国产精品久久久久麻豆| 色综合欧美在线| 欧美精品免费视频| 久久影院视频免费| 国产精品素人一区二区| 亚洲色图欧美在线|