亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? more about the theoretical underpinnings of the bootstrap.htm

?? matlab bootstrap程序設(shè)計(jì)方法
?? HTM
?? 第 1 頁 / 共 3 頁
字號(hào):
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!-- saved from url=(0060)http://www-stat.stanford.edu/~susan/courses/s208/node15.html -->
<!--Converted with LaTeX2HTML 2002-2 (1.70)original version by:  Nikos Drakos, CBLU, University of Leeds* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan* with significant contributions from:  Jens Lippmann, Marek Rouchal, Martin Wilck and others --><HTML><HEAD><TITLE>More about the theoretical underpinnings of the Bootstrap</TITLE>
<META http-equiv=Content-Type content="text/html; charset=iso-8859-1">
<META content="More about the theoretical underpinnings of the Bootstrap" 
name=description>
<META content=web1 name=keywords>
<META content=document name=resource-type>
<META content=global name=distribution>
<META content="MSHTML 6.00.2900.2523" name=GENERATOR>
<META http-equiv=Content-Style-Type content=text/css><LINK 
href="More about the theoretical underpinnings of the Bootstrap.files/web1.css" 
rel=STYLESHEET><LINK href="node16.html" rel=next><LINK href="node14.html" 
rel=previous><LINK href="node6.html" rel=up><LINK href="node16.html" 
rel=next></HEAD>
<BODY bgColor=#ffffff><!--Navigation Panel--><A 
href="http://www-stat.stanford.edu/~susan/courses/s208/node16.html" 
name=tex2html355><IMG height=24 alt=next src="" width=37 align=bottom 
border=0></A> <A 
href="http://www-stat.stanford.edu/~susan/courses/s208/node6.html" 
name=tex2html353><IMG height=24 alt=up src="" width=26 align=bottom 
border=0></A> <A 
href="http://www-stat.stanford.edu/~susan/courses/s208/node14.html" 
name=tex2html347><IMG height=24 alt=previous src="" width=63 align=bottom 
border=0></A> <BR><B>Next:</B> <A 
href="http://www-stat.stanford.edu/~susan/courses/s208/node16.html" 
name=tex2html356>The jackknife</A> <B>Up:</B> <A 
href="http://www-stat.stanford.edu/~susan/courses/s208/node6.html" 
name=tex2html354>Lectures</A> <B>Previous:</B> <A 
href="http://www-stat.stanford.edu/~susan/courses/s208/node14.html" 
name=tex2html348>Monte Carlo</A> <BR><BR><!--End of Navigation Panel--><!--Table of Child-Links--><A 
name=CHILD_LINKS><STRONG>Subsections</STRONG></A> 
<UL>
  <LI><A 
  href="http://www-stat.stanford.edu/~susan/courses/s208/node15.html#SECTION00291000000000000000" 
  name=tex2html357>Statistical Functionals</A> 
  <UL>
    <LI><A 
    href="http://www-stat.stanford.edu/~susan/courses/s208/node15.html#SECTION00291100000000000000" 
    name=tex2html358>Notions of Convergence</A> 
    <LI><A 
    href="http://www-stat.stanford.edu/~susan/courses/s208/node15.html#SECTION00291200000000000000" 
    name=tex2html359>Why is the empirical cdf <IMG height=45 alt=$\hat{F}_n$ 
    src="More about the theoretical underpinnings of the Bootstrap.files/img16.png" 
    width=26 align=middle border=0> a good estimator of F?</A> 
    <LI><A 
    href="http://www-stat.stanford.edu/~susan/courses/s208/node15.html#SECTION00291300000000000000" 
    name=tex2html360>Generalized Statistical Functionals</A> </LI></UL><BR>
  <LI><A 
  href="http://www-stat.stanford.edu/~susan/courses/s208/node15.html#SECTION00292000000000000000" 
  name=tex2html361>Example and Counterexample</A> 
  <UL>
    <LI><A 
    href="http://www-stat.stanford.edu/~susan/courses/s208/node15.html#SECTION00292100000000000000" 
    name=tex2html362>Bootstrap of the maximum</A> 
    <UL>
      <LI><A 
      href="http://www-stat.stanford.edu/~susan/courses/s208/node15.html#SECTION00292110000000000000" 
      name=tex2html363>Theoretical Analysis</A> </LI></UL></LI></UL><BR>
  <LI><A 
  href="http://www-stat.stanford.edu/~susan/courses/s208/node15.html#SECTION00293000000000000000" 
  name=tex2html364>Parametric Bootstrap</A> 
  <UL>
    <LI><A 
    href="http://www-stat.stanford.edu/~susan/courses/s208/node15.html#SECTION00293100000000000000" 
    name=tex2html365>Maximum</A> 
    <LI><A 
    href="http://www-stat.stanford.edu/~susan/courses/s208/node15.html#SECTION00293200000000000000" 
    name=tex2html366>Correlation Coefficient</A> </LI></UL></LI></UL><!--End of Table of Child-Links-->
<HR>

<H1><A name=SECTION00290000000000000000>More about the theoretical underpinnings 
of the Bootstrap</A> </H1>
<P>
<H2><A name=SECTION00291000000000000000>Statistical Functionals</A> </H2>
<P>(Reference : Eric Lehmann, 1998,pp.381-438.) <BR>We often speak of the 
asymptotic properties of the sample mean <IMG height=19 alt=$\bar{X}$ 
src="More about the theoretical underpinnings of the Bootstrap.files/img12.png" 
width=22 align=bottom border=0>.These refer to the sequence <IMG height=40 
alt=$\bar{X}_n$ 
src="More about the theoretical underpinnings of the Bootstrap.files/img173.png" 
width=29 align=middle border=0>. These functions are the <I>same</I> in some 
sense, for all sample size. The notion of statistical functional makes this 
clearer. 
<P>Suppose we are interested in real-valued parameters. We often have a 
situation where the parameter of interest is a function of the distribution 
function <IMG height=16 alt=$F$ 
src="More about the theoretical underpinnings of the Bootstrap.files/img1.png" 
width=19 align=bottom border=0>, these are called statistical functionals. <BR>
<P></P>
<DIV align=center><!-- MATH \begin{displaymath}\theta=s(F)\end{displaymath} --><IMG 
height=33 alt=\begin{displaymath}\theta=s(F)\end{displaymath} 
src="More about the theoretical underpinnings of the Bootstrap.files/img174.png" 
width=70 border=0> </DIV><BR clear=all>
<P></P>Examples: <BR><BR>
<P></P>
<DIV align=center><!-- MATH \begin{displaymath}\mu=E_F(X),\qquad  \mu^{(k)}=E_F(X-E(X))^k , \qquad F^{-1}(p)\end{displaymath} --><IMG 
height=33 
alt="\begin{displaymath}\mu=E_F(X),\qquad \mu^{(k)}=E_F(X-E(X))^k , \qquad F^{-1}(p) \end{displaymath}" 
src="More about the theoretical underpinnings of the Bootstrap.files/img175.png" 
width=428 border=0> </DIV><BR clear=all>
<P></P>Goodness of fit statistics: <BR><BR>
<P></P>
<DIV align=center><!-- MATH \begin{displaymath}\mbox{Kolmogorov-Smirnov 's } h(F)=sup_x |F(x)-F_0(x)|\end{displaymath} --><IMG 
height=33 
alt="\begin{displaymath}\mbox{Kolmogorov-Smirnov 's } h(F)=sup_x \vert F(x)-F_0(x)\vert \end{displaymath}" 
src="More about the theoretical underpinnings of the Bootstrap.files/img176.png" 
width=416 border=0> </DIV><BR clear=all>
<P></P>is estimated by: <BR>
<P></P>
<DIV align=center><!-- MATH \begin{displaymath}h(\mbox{$\hat{F}_n$})=sup_x |\mbox{$\hat{F}_n$}(x)-F_0(x)|\end{displaymath} --><IMG 
height=33 
alt="\begin{displaymath}h(\mbox{$\hat{F}_n$})=sup_x \vert\mbox{$\hat{F}_n$}(x)-F_0(x)\vert \end{displaymath}" 
src="More about the theoretical underpinnings of the Bootstrap.files/img177.png" 
width=231 border=0> </DIV><BR clear=all>
<P></P>Ratio of two means. <BR>
<P></P>
<DIV align=center><!-- MATH \begin{displaymath}\theta=\frac{\mu_1}{\mu_2}=\frac{E_{F_1}(X)}{E_{F_2}(X)}\end{displaymath} --><IMG 
height=52 
alt=\begin{displaymath}\theta=\frac{\mu_1}{\mu_2}=\frac{E_{F_1}(X)}{E_{F_2}(X)}\end{displaymath} 
src="More about the theoretical underpinnings of the Bootstrap.files/img178.png" 
width=146 border=0> </DIV><BR clear=all>
<P></P>We use the sample cdf <BR>
<P></P>
<DIV align=center><!-- MATH \begin{displaymath}\hat{F}_n=\frac{\#X_i \leq x}{n}=\frac{1}{n}\sum_{i=1}^n\delta_{\{X_i\leq x\}}\end{displaymath} --><IMG 
height=55 
alt="\begin{displaymath}\hat{F}_n=\frac{\char93 X_i \leq x}{n}=\frac{1}{n}\sum_{i=1}^n&#10;\delta_{\{X_i\leq x\}}\end{displaymath}" 
src="More about the theoretical underpinnings of the Bootstrap.files/img179.png" 
width=246 border=0> </DIV><BR clear=all>
<P></P>as the nonparametric estimate of the unknown distribution <IMG height=16 
alt=$F$ 
src="More about the theoretical underpinnings of the Bootstrap.files/img1.png" 
width=19 align=bottom border=0>. 
<P>The usual estimates for these functionals are obtained by simply plugging in 
the empirical distribution function for the unknown theoretical one. 
<P>Thus taking into account that for any function <IMG height=33 alt=$g$ 
src="More about the theoretical underpinnings of the Bootstrap.files/img180.png" 
width=14 align=middle border=0> we have: <BR>
<P></P>
<DIV align=center><!-- MATH \begin{displaymath}\int g(x)d\mbox{$\hat{F}_n$}(x)=\frac{1}{n}\sum_{i=1}^n g(x_i)\end{displaymath} --><IMG 
height=55 
alt="\begin{displaymath}\int g(x)d\mbox{$\hat{F}_n$}(x)=\frac{1}{n}\sum_{i=1}^n g(x_i)\end{displaymath}" 
src="More about the theoretical underpinnings of the Bootstrap.files/img181.png" 
width=216 border=0> </DIV><BR clear=all>
<P></P>the plug-in estiamte for the mean is <!-- MATH $\int x dF_n(x)    =\frac{1}{n}\sum_{i=1}^n   x_i$ --><IMG height=40 
alt="$\int x dF_n(x) =\frac{1}{n}\sum_{i=1}^n x_i$" 
src="More about the theoretical underpinnings of the Bootstrap.files/img182.png" 
width=184 align=middle border=0> the usual sample estimate, for the variance, it 
is the biased estimate: <BR>
<P></P>
<DIV align=center><!-- MATH \begin{displaymath}\hat{var_F(X)}=\int (x-E_{\mbox{$\hat{F}_n$}}(x))^2=\frac{1}{n}\sum_{i=1}^n (x_i-\bar{x})^2\end{displaymath} --><IMG 
height=55 
alt="\begin{displaymath}\hat{var_F(X)}=\int (x-E_{\mbox{$\hat{F}_n$}}(x))^2=\frac{1}{n}\sum_{i=1}^n (x_i-\bar{x})^2&#10;\end{displaymath}" 
src="More about the theoretical underpinnings of the Bootstrap.files/img183.png" 
width=366 border=0> </DIV><BR clear=all>
<P></P>
<H3><A name=SECTION00291100000000000000>Notions of Convergence</A> </H3><FONT 
color=#ff0000>Convergence in Law</FONT> <BR>A sequence of cumulative 
distribution functions <IMG height=35 alt=$H_n$ 
src="More about the theoretical underpinnings of the Bootstrap.files/img184.png" 
width=29 align=middle border=0> is said to converge in distribution to <IMG 
height=16 alt=$H$ 
src="More about the theoretical underpinnings of the Bootstrap.files/img185.png" 
width=22 align=bottom border=0> iff 
<!-- MATH $H_n(x)\longrightarrow H(x)$ --><IMG height=37 
alt="$H_n(x)\longrightarrow H(x)$" 
src="More about the theoretical underpinnings of the Bootstrap.files/img186.png" 
width=138 align=middle border=0> on all continuity points of <IMG height=16 
alt=$H$ 
src="More about the theoretical underpinnings of the Bootstrap.files/img185.png" 
width=22 align=bottom border=0>. 
<P>We say that if the random variable <IMG height=35 alt=$Y_n$ 
src="More about the theoretical underpinnings of the Bootstrap.files/img187.png" 
width=24 align=middle border=0> has cdf <IMG height=35 alt=$H_n$ 
src="More about the theoretical underpinnings of the Bootstrap.files/img184.png" 
width=29 align=middle border=0> and the rv <IMG height=16 alt=$Y$ 
src="More about the theoretical underpinnings of the Bootstrap.files/img163.png" 
width=20 align=bottom border=0> has cdf <IMG height=16 alt=$H$ 
src="More about the theoretical underpinnings of the Bootstrap.files/img185.png" 
width=22 align=bottom border=0>, <IMG height=35 alt=$Y_n$ 
src="More about the theoretical underpinnings of the Bootstrap.files/img187.png" 
width=24 align=middle border=0> <I>converges in law</I> to <IMG height=16 
alt=$Y$ 

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美不卡一区二区| 久久先锋资源网| 久久99精品久久久久久久久久久久| 日韩欧美一区在线| 成人精品视频.| 亚洲电影一级片| 国产丝袜在线精品| 91蜜桃婷婷狠狠久久综合9色| 亚洲精品乱码久久久久久久久 | 免播放器亚洲一区| 国产精品天干天干在观线| 欧美日韩免费不卡视频一区二区三区| 免费成人在线观看视频| 亚洲人成小说网站色在线 | 婷婷久久综合九色国产成人 | 人人超碰91尤物精品国产| www国产精品av| 欧美色综合网站| 国产在线看一区| 亚洲午夜精品在线| 中文字幕第一区| 日韩一区二区三区在线观看| 91美女视频网站| 国产精品一线二线三线精华| 亚洲成人在线观看视频| 国产精品天干天干在观线| 欧美三级中文字幕| 懂色av中文字幕一区二区三区| 亚洲18色成人| 一区二区三区在线不卡| 国产三级精品三级| 精品少妇一区二区三区| 9191久久久久久久久久久| 日本高清不卡在线观看| 成人丝袜视频网| 国产露脸91国语对白| 奇米精品一区二区三区在线观看| 亚洲精品中文在线影院| 国产精品丝袜一区| 欧美成人一区二区三区在线观看| 欧美日韩二区三区| 欧美无人高清视频在线观看| 色婷婷亚洲综合| 不卡av在线网| 成人黄色在线看| 成人av网在线| 大胆亚洲人体视频| 极品瑜伽女神91| 蜜桃av一区二区| 免费xxxx性欧美18vr| 日本网站在线观看一区二区三区| 亚洲成人免费在线观看| 亚洲香肠在线观看| 亚瑟在线精品视频| 日韩成人午夜电影| 日韩成人免费在线| 蜜桃视频一区二区三区| 蜜臀av性久久久久蜜臀aⅴ| 日本最新不卡在线| 热久久国产精品| 精品一区二区免费| 国产一区二区三区四| 国产精品综合二区| 国产麻豆午夜三级精品| 青青草原综合久久大伊人精品| 午夜精品久久久久久久蜜桃app| 国产精品网站在线观看| 亚洲天堂网中文字| 1000部国产精品成人观看| 亚洲色图欧美在线| 一区二区三区 在线观看视频| 亚洲一区二区三区四区中文字幕 | 国产人久久人人人人爽| 国产精品久久久久一区二区三区 | 国产精品人妖ts系列视频| 欧美韩国日本一区| 18成人在线观看| 国产精品毛片高清在线完整版| 中文字幕第一页久久| 亚洲免费观看高清| 日本亚洲免费观看| 国产91精品一区二区麻豆亚洲| 成人精品在线视频观看| 欧美日韩一区精品| 久久免费午夜影院| 中文字幕一区二区三区视频| 亚洲成人av资源| 麻豆91在线播放免费| jvid福利写真一区二区三区| 欧美亚洲国产bt| www国产精品av| 亚洲精品日产精品乱码不卡| 日韩av在线播放中文字幕| 国产91对白在线观看九色| 一本久久综合亚洲鲁鲁五月天| 午夜欧美2019年伦理 | 麻豆91在线看| av电影天堂一区二区在线| 777奇米成人网| 久久久久国产免费免费| 一区二区三区免费看视频| 久久国产日韩欧美精品| 91网页版在线| 日韩视频一区二区三区在线播放| 国产精品视频看| 美女精品自拍一二三四| 丁香激情综合五月| 欧美日韩亚洲综合在线 欧美亚洲特黄一级| 欧美精品一区二区不卡| 亚洲欧美视频在线观看| 国产乱人伦精品一区二区在线观看| 日本丶国产丶欧美色综合| 欧美刺激午夜性久久久久久久| 亚洲精品一卡二卡| 国产精品一区不卡| 91精品国产欧美一区二区成人| 亚洲欧洲性图库| 狠狠色丁香久久婷婷综合丁香| 欧日韩精品视频| 国产精品国产三级国产三级人妇| 免费观看91视频大全| 在线视频一区二区免费| 国产精品日韩成人| 狠狠色狠狠色综合系列| 日韩一级免费观看| 夜夜精品视频一区二区| 国产精品66部| 欧美精品一区二区三区在线| 偷拍与自拍一区| 色激情天天射综合网| 国产精品久久三区| 国产福利91精品一区| 日韩免费一区二区| 久久er99精品| 国产亚洲一区字幕| 成人丝袜18视频在线观看| 一区在线观看视频| 一本色道**综合亚洲精品蜜桃冫| 亚洲乱码日产精品bd| 欧美在线观看一区| 日韩一区精品字幕| 日韩免费电影一区| 国产剧情一区二区三区| 久久青草欧美一区二区三区| 国产不卡视频一区二区三区| 中文字幕亚洲不卡| 欧美午夜电影一区| 免费欧美日韩国产三级电影| 日韩亚洲欧美成人一区| 国产呦精品一区二区三区网站 | 亚洲国产你懂的| 欧美日韩国产天堂| 麻豆成人久久精品二区三区红 | 日韩午夜小视频| 久久精品久久精品| 中文字幕免费不卡在线| 色94色欧美sute亚洲线路一久| 午夜精品免费在线| 久久综合久久鬼色| 99久久免费视频.com| 亚洲国产精品影院| 2024国产精品| 色综合久久中文综合久久97| 亚欧色一区w666天堂| 久久久蜜桃精品| 91官网在线观看| 久久 天天综合| 亚洲欧美日本在线| 欧美一区二区三区色| 不卡一区在线观看| 天天影视色香欲综合网老头| 精品国产亚洲一区二区三区在线观看| 国产jizzjizz一区二区| 亚洲国产一区二区三区青草影视| 精品国精品国产| 91影视在线播放| 久久国产精品一区二区| 亚洲精选视频免费看| 日韩欧美高清dvd碟片| 色诱视频网站一区| 国产一区欧美日韩| 亚洲国产中文字幕在线视频综合| 久久免费看少妇高潮| 欧美日韩色一区| 国产成人在线影院| 日韩av电影天堂| 亚洲日本乱码在线观看| 精品对白一区国产伦| 在线欧美小视频| 国产美女在线精品| 日本亚洲视频在线| ...xxx性欧美| 久久久亚洲欧洲日产国码αv| 欧美性色黄大片| 不卡av电影在线播放| 国产在线不卡一卡二卡三卡四卡| 性做久久久久久久免费看| 日韩毛片一二三区| 国产三级精品在线| 日韩欧美精品在线|