亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? more about the theoretical underpinnings of the bootstrap.htm

?? matlab bootstrap程序設計方法
?? HTM
?? 第 1 頁 / 共 3 頁
字號:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!-- saved from url=(0060)http://www-stat.stanford.edu/~susan/courses/s208/node15.html -->
<!--Converted with LaTeX2HTML 2002-2 (1.70)original version by:  Nikos Drakos, CBLU, University of Leeds* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan* with significant contributions from:  Jens Lippmann, Marek Rouchal, Martin Wilck and others --><HTML><HEAD><TITLE>More about the theoretical underpinnings of the Bootstrap</TITLE>
<META http-equiv=Content-Type content="text/html; charset=iso-8859-1">
<META content="More about the theoretical underpinnings of the Bootstrap" 
name=description>
<META content=web1 name=keywords>
<META content=document name=resource-type>
<META content=global name=distribution>
<META content="MSHTML 6.00.2900.2523" name=GENERATOR>
<META http-equiv=Content-Style-Type content=text/css><LINK 
href="More about the theoretical underpinnings of the Bootstrap.files/web1.css" 
rel=STYLESHEET><LINK href="node16.html" rel=next><LINK href="node14.html" 
rel=previous><LINK href="node6.html" rel=up><LINK href="node16.html" 
rel=next></HEAD>
<BODY bgColor=#ffffff><!--Navigation Panel--><A 
href="http://www-stat.stanford.edu/~susan/courses/s208/node16.html" 
name=tex2html355><IMG height=24 alt=next src="" width=37 align=bottom 
border=0></A> <A 
href="http://www-stat.stanford.edu/~susan/courses/s208/node6.html" 
name=tex2html353><IMG height=24 alt=up src="" width=26 align=bottom 
border=0></A> <A 
href="http://www-stat.stanford.edu/~susan/courses/s208/node14.html" 
name=tex2html347><IMG height=24 alt=previous src="" width=63 align=bottom 
border=0></A> <BR><B>Next:</B> <A 
href="http://www-stat.stanford.edu/~susan/courses/s208/node16.html" 
name=tex2html356>The jackknife</A> <B>Up:</B> <A 
href="http://www-stat.stanford.edu/~susan/courses/s208/node6.html" 
name=tex2html354>Lectures</A> <B>Previous:</B> <A 
href="http://www-stat.stanford.edu/~susan/courses/s208/node14.html" 
name=tex2html348>Monte Carlo</A> <BR><BR><!--End of Navigation Panel--><!--Table of Child-Links--><A 
name=CHILD_LINKS><STRONG>Subsections</STRONG></A> 
<UL>
  <LI><A 
  href="http://www-stat.stanford.edu/~susan/courses/s208/node15.html#SECTION00291000000000000000" 
  name=tex2html357>Statistical Functionals</A> 
  <UL>
    <LI><A 
    href="http://www-stat.stanford.edu/~susan/courses/s208/node15.html#SECTION00291100000000000000" 
    name=tex2html358>Notions of Convergence</A> 
    <LI><A 
    href="http://www-stat.stanford.edu/~susan/courses/s208/node15.html#SECTION00291200000000000000" 
    name=tex2html359>Why is the empirical cdf <IMG height=45 alt=$\hat{F}_n$ 
    src="More about the theoretical underpinnings of the Bootstrap.files/img16.png" 
    width=26 align=middle border=0> a good estimator of F?</A> 
    <LI><A 
    href="http://www-stat.stanford.edu/~susan/courses/s208/node15.html#SECTION00291300000000000000" 
    name=tex2html360>Generalized Statistical Functionals</A> </LI></UL><BR>
  <LI><A 
  href="http://www-stat.stanford.edu/~susan/courses/s208/node15.html#SECTION00292000000000000000" 
  name=tex2html361>Example and Counterexample</A> 
  <UL>
    <LI><A 
    href="http://www-stat.stanford.edu/~susan/courses/s208/node15.html#SECTION00292100000000000000" 
    name=tex2html362>Bootstrap of the maximum</A> 
    <UL>
      <LI><A 
      href="http://www-stat.stanford.edu/~susan/courses/s208/node15.html#SECTION00292110000000000000" 
      name=tex2html363>Theoretical Analysis</A> </LI></UL></LI></UL><BR>
  <LI><A 
  href="http://www-stat.stanford.edu/~susan/courses/s208/node15.html#SECTION00293000000000000000" 
  name=tex2html364>Parametric Bootstrap</A> 
  <UL>
    <LI><A 
    href="http://www-stat.stanford.edu/~susan/courses/s208/node15.html#SECTION00293100000000000000" 
    name=tex2html365>Maximum</A> 
    <LI><A 
    href="http://www-stat.stanford.edu/~susan/courses/s208/node15.html#SECTION00293200000000000000" 
    name=tex2html366>Correlation Coefficient</A> </LI></UL></LI></UL><!--End of Table of Child-Links-->
<HR>

<H1><A name=SECTION00290000000000000000>More about the theoretical underpinnings 
of the Bootstrap</A> </H1>
<P>
<H2><A name=SECTION00291000000000000000>Statistical Functionals</A> </H2>
<P>(Reference : Eric Lehmann, 1998,pp.381-438.) <BR>We often speak of the 
asymptotic properties of the sample mean <IMG height=19 alt=$\bar{X}$ 
src="More about the theoretical underpinnings of the Bootstrap.files/img12.png" 
width=22 align=bottom border=0>.These refer to the sequence <IMG height=40 
alt=$\bar{X}_n$ 
src="More about the theoretical underpinnings of the Bootstrap.files/img173.png" 
width=29 align=middle border=0>. These functions are the <I>same</I> in some 
sense, for all sample size. The notion of statistical functional makes this 
clearer. 
<P>Suppose we are interested in real-valued parameters. We often have a 
situation where the parameter of interest is a function of the distribution 
function <IMG height=16 alt=$F$ 
src="More about the theoretical underpinnings of the Bootstrap.files/img1.png" 
width=19 align=bottom border=0>, these are called statistical functionals. <BR>
<P></P>
<DIV align=center><!-- MATH \begin{displaymath}\theta=s(F)\end{displaymath} --><IMG 
height=33 alt=\begin{displaymath}\theta=s(F)\end{displaymath} 
src="More about the theoretical underpinnings of the Bootstrap.files/img174.png" 
width=70 border=0> </DIV><BR clear=all>
<P></P>Examples: <BR><BR>
<P></P>
<DIV align=center><!-- MATH \begin{displaymath}\mu=E_F(X),\qquad  \mu^{(k)}=E_F(X-E(X))^k , \qquad F^{-1}(p)\end{displaymath} --><IMG 
height=33 
alt="\begin{displaymath}\mu=E_F(X),\qquad \mu^{(k)}=E_F(X-E(X))^k , \qquad F^{-1}(p) \end{displaymath}" 
src="More about the theoretical underpinnings of the Bootstrap.files/img175.png" 
width=428 border=0> </DIV><BR clear=all>
<P></P>Goodness of fit statistics: <BR><BR>
<P></P>
<DIV align=center><!-- MATH \begin{displaymath}\mbox{Kolmogorov-Smirnov 's } h(F)=sup_x |F(x)-F_0(x)|\end{displaymath} --><IMG 
height=33 
alt="\begin{displaymath}\mbox{Kolmogorov-Smirnov 's } h(F)=sup_x \vert F(x)-F_0(x)\vert \end{displaymath}" 
src="More about the theoretical underpinnings of the Bootstrap.files/img176.png" 
width=416 border=0> </DIV><BR clear=all>
<P></P>is estimated by: <BR>
<P></P>
<DIV align=center><!-- MATH \begin{displaymath}h(\mbox{$\hat{F}_n$})=sup_x |\mbox{$\hat{F}_n$}(x)-F_0(x)|\end{displaymath} --><IMG 
height=33 
alt="\begin{displaymath}h(\mbox{$\hat{F}_n$})=sup_x \vert\mbox{$\hat{F}_n$}(x)-F_0(x)\vert \end{displaymath}" 
src="More about the theoretical underpinnings of the Bootstrap.files/img177.png" 
width=231 border=0> </DIV><BR clear=all>
<P></P>Ratio of two means. <BR>
<P></P>
<DIV align=center><!-- MATH \begin{displaymath}\theta=\frac{\mu_1}{\mu_2}=\frac{E_{F_1}(X)}{E_{F_2}(X)}\end{displaymath} --><IMG 
height=52 
alt=\begin{displaymath}\theta=\frac{\mu_1}{\mu_2}=\frac{E_{F_1}(X)}{E_{F_2}(X)}\end{displaymath} 
src="More about the theoretical underpinnings of the Bootstrap.files/img178.png" 
width=146 border=0> </DIV><BR clear=all>
<P></P>We use the sample cdf <BR>
<P></P>
<DIV align=center><!-- MATH \begin{displaymath}\hat{F}_n=\frac{\#X_i \leq x}{n}=\frac{1}{n}\sum_{i=1}^n\delta_{\{X_i\leq x\}}\end{displaymath} --><IMG 
height=55 
alt="\begin{displaymath}\hat{F}_n=\frac{\char93 X_i \leq x}{n}=\frac{1}{n}\sum_{i=1}^n&#10;\delta_{\{X_i\leq x\}}\end{displaymath}" 
src="More about the theoretical underpinnings of the Bootstrap.files/img179.png" 
width=246 border=0> </DIV><BR clear=all>
<P></P>as the nonparametric estimate of the unknown distribution <IMG height=16 
alt=$F$ 
src="More about the theoretical underpinnings of the Bootstrap.files/img1.png" 
width=19 align=bottom border=0>. 
<P>The usual estimates for these functionals are obtained by simply plugging in 
the empirical distribution function for the unknown theoretical one. 
<P>Thus taking into account that for any function <IMG height=33 alt=$g$ 
src="More about the theoretical underpinnings of the Bootstrap.files/img180.png" 
width=14 align=middle border=0> we have: <BR>
<P></P>
<DIV align=center><!-- MATH \begin{displaymath}\int g(x)d\mbox{$\hat{F}_n$}(x)=\frac{1}{n}\sum_{i=1}^n g(x_i)\end{displaymath} --><IMG 
height=55 
alt="\begin{displaymath}\int g(x)d\mbox{$\hat{F}_n$}(x)=\frac{1}{n}\sum_{i=1}^n g(x_i)\end{displaymath}" 
src="More about the theoretical underpinnings of the Bootstrap.files/img181.png" 
width=216 border=0> </DIV><BR clear=all>
<P></P>the plug-in estiamte for the mean is <!-- MATH $\int x dF_n(x)    =\frac{1}{n}\sum_{i=1}^n   x_i$ --><IMG height=40 
alt="$\int x dF_n(x) =\frac{1}{n}\sum_{i=1}^n x_i$" 
src="More about the theoretical underpinnings of the Bootstrap.files/img182.png" 
width=184 align=middle border=0> the usual sample estimate, for the variance, it 
is the biased estimate: <BR>
<P></P>
<DIV align=center><!-- MATH \begin{displaymath}\hat{var_F(X)}=\int (x-E_{\mbox{$\hat{F}_n$}}(x))^2=\frac{1}{n}\sum_{i=1}^n (x_i-\bar{x})^2\end{displaymath} --><IMG 
height=55 
alt="\begin{displaymath}\hat{var_F(X)}=\int (x-E_{\mbox{$\hat{F}_n$}}(x))^2=\frac{1}{n}\sum_{i=1}^n (x_i-\bar{x})^2&#10;\end{displaymath}" 
src="More about the theoretical underpinnings of the Bootstrap.files/img183.png" 
width=366 border=0> </DIV><BR clear=all>
<P></P>
<H3><A name=SECTION00291100000000000000>Notions of Convergence</A> </H3><FONT 
color=#ff0000>Convergence in Law</FONT> <BR>A sequence of cumulative 
distribution functions <IMG height=35 alt=$H_n$ 
src="More about the theoretical underpinnings of the Bootstrap.files/img184.png" 
width=29 align=middle border=0> is said to converge in distribution to <IMG 
height=16 alt=$H$ 
src="More about the theoretical underpinnings of the Bootstrap.files/img185.png" 
width=22 align=bottom border=0> iff 
<!-- MATH $H_n(x)\longrightarrow H(x)$ --><IMG height=37 
alt="$H_n(x)\longrightarrow H(x)$" 
src="More about the theoretical underpinnings of the Bootstrap.files/img186.png" 
width=138 align=middle border=0> on all continuity points of <IMG height=16 
alt=$H$ 
src="More about the theoretical underpinnings of the Bootstrap.files/img185.png" 
width=22 align=bottom border=0>. 
<P>We say that if the random variable <IMG height=35 alt=$Y_n$ 
src="More about the theoretical underpinnings of the Bootstrap.files/img187.png" 
width=24 align=middle border=0> has cdf <IMG height=35 alt=$H_n$ 
src="More about the theoretical underpinnings of the Bootstrap.files/img184.png" 
width=29 align=middle border=0> and the rv <IMG height=16 alt=$Y$ 
src="More about the theoretical underpinnings of the Bootstrap.files/img163.png" 
width=20 align=bottom border=0> has cdf <IMG height=16 alt=$H$ 
src="More about the theoretical underpinnings of the Bootstrap.files/img185.png" 
width=22 align=bottom border=0>, <IMG height=35 alt=$Y_n$ 
src="More about the theoretical underpinnings of the Bootstrap.files/img187.png" 
width=24 align=middle border=0> <I>converges in law</I> to <IMG height=16 
alt=$Y$ 

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美剧情电影在线观看完整版免费励志电影 | 欧美一级片在线观看| 欧美tickling挠脚心丨vk| 国产精品天干天干在观线| 亚洲福利电影网| 高清久久久久久| 精品国精品自拍自在线| 亚洲自拍偷拍麻豆| 91色综合久久久久婷婷| 国产欧美日韩精品一区| 美女一区二区在线观看| 欧洲精品一区二区三区在线观看| 国产亚洲欧美激情| 看国产成人h片视频| 欧美老年两性高潮| 亚洲综合色在线| 成人性生交大片| 久久久不卡网国产精品一区| 日本欧美在线观看| 欧美日韩在线综合| 亚洲香蕉伊在人在线观| 色天使色偷偷av一区二区| 亚洲国产高清aⅴ视频| 麻豆精品精品国产自在97香蕉| 欧美在线制服丝袜| 亚洲自拍偷拍图区| 欧美三级日韩在线| 亚州成人在线电影| 欧美日韩中文字幕精品| 亚洲一二三区视频在线观看| 色成年激情久久综合| 亚洲手机成人高清视频| 色综合天天狠狠| 亚洲综合色网站| 在线播放欧美女士性生活| 亚洲国产一区视频| 欧美男人的天堂一二区| 婷婷综合五月天| 67194成人在线观看| 日本一区中文字幕| 精品免费日韩av| 国产一区二区三区在线观看免费视频 | 色哟哟一区二区在线观看| **欧美大码日韩| 色av一区二区| 亚洲成av人影院在线观看网| 欧美老女人第四色| 久久av中文字幕片| 国产精品色婷婷| 91美女在线看| 亚洲不卡av一区二区三区| 91精品一区二区三区在线观看| 青青草成人在线观看| 久久综合国产精品| 91蜜桃传媒精品久久久一区二区| 亚洲一区二区免费视频| 日韩欧美成人激情| 成人做爰69片免费看网站| 一个色妞综合视频在线观看| 欧美高清激情brazzers| 国产精品白丝av| 一区二区在线看| 日韩美一区二区三区| youjizz久久| 午夜av一区二区三区| 国产嫩草影院久久久久| 日本韩国一区二区三区视频| 美女任你摸久久| 一区二区三区中文字幕| 精品久久五月天| 91麻豆6部合集magnet| 美女精品自拍一二三四| 中文字幕av免费专区久久| 欧美日韩在线亚洲一区蜜芽| 国产成人免费视频一区| 偷偷要91色婷婷| 综合久久给合久久狠狠狠97色| 在线观看91av| 91视频在线观看| 国内久久精品视频| 亚洲 欧美综合在线网络| 欧美国产日韩在线观看| 欧美一级日韩免费不卡| 91看片淫黄大片一级在线观看| 爽爽淫人综合网网站| 亚洲欧洲日产国产综合网| 精品国产乱码久久久久久免费| 不卡av在线网| 国产一区在线精品| 午夜不卡av免费| 亚洲自拍与偷拍| 亚洲人成伊人成综合网小说| 精品国产欧美一区二区| 欧美日韩免费一区二区三区| av成人免费在线| 国产成人精品综合在线观看| 日韩在线一区二区三区| 一区二区免费在线播放| 亚洲欧美怡红院| 中文字幕不卡一区| 欧美激情综合五月色丁香小说| 日韩亚洲欧美中文三级| 欧美高清视频在线高清观看mv色露露十八| 不卡欧美aaaaa| 丁香天五香天堂综合| 国内精品伊人久久久久av影院 | 337p日本欧洲亚洲大胆精品| 精品视频在线看| 在线看日韩精品电影| 在线视频你懂得一区| 色婷婷亚洲一区二区三区| 97久久人人超碰| 99免费精品在线观看| 9色porny自拍视频一区二区| 成人一区二区三区在线观看| 黄色资源网久久资源365| 麻豆一区二区在线| 日本aⅴ免费视频一区二区三区| 日日摸夜夜添夜夜添精品视频 | 在线观看欧美日本| 色菇凉天天综合网| 欧美日韩精品免费观看视频| 日本韩国欧美一区二区三区| 日本高清成人免费播放| 91极品视觉盛宴| 久久久久久久久久久久久久久99| 欧美精品一区二区在线播放| 久久久.com| 中文字幕亚洲在| 亚洲高清在线视频| 蜜桃精品视频在线观看| 国产中文一区二区三区| 国产不卡免费视频| 97精品国产露脸对白| 欧美午夜精品电影| 欧美一级专区免费大片| 久久色在线视频| 中文字幕亚洲综合久久菠萝蜜| 亚洲最色的网站| 美女脱光内衣内裤视频久久网站| 国产一区二区网址| 色婷婷精品久久二区二区蜜臂av| 欧美偷拍一区二区| 精品国内二区三区| 亚洲精品亚洲人成人网| 日韩av成人高清| 不卡电影一区二区三区| 欧美日韩精品福利| 久久久国产综合精品女国产盗摄| 国产精品福利一区二区| 五月天亚洲婷婷| 国产91在线观看丝袜| 欧美日韩高清在线| 国产精品伦理在线| 蜜臀av一区二区| 99久久免费精品高清特色大片| 欧美日韩高清不卡| 国产精品热久久久久夜色精品三区| 伊人色综合久久天天人手人婷| 麻豆视频一区二区| 91官网在线免费观看| 欧美v国产在线一区二区三区| 亚洲欧美日本在线| 久久99精品国产.久久久久久| 色94色欧美sute亚洲线路二| 国产精品成人免费在线| 久久97超碰色| 欧美性受xxxx黑人xyx| 国产亚洲综合色| 日韩av二区在线播放| 在线免费精品视频| 国产精品伦一区二区三级视频| 麻豆免费精品视频| 欧美日韩日日摸| 亚洲精品乱码久久久久久日本蜜臀| 美女免费视频一区| 欧美日韩高清不卡| 亚洲午夜久久久久中文字幕久| 国产成人久久精品77777最新版本 国产成人鲁色资源国产91色综 | 亚洲一卡二卡三卡四卡无卡久久 | 日韩午夜小视频| 亚洲欧洲在线观看av| 国产成人在线看| 欧美大胆一级视频| 日本视频中文字幕一区二区三区| 91蝌蚪porny| 中文字幕在线一区二区三区| 国产精品一区二区x88av| 欧美一二三区在线观看| 亚洲一区av在线| 色老汉一区二区三区| 一区在线中文字幕| 国产成人超碰人人澡人人澡| 精品日韩在线观看| 美女脱光内衣内裤视频久久影院| 欧美亚洲禁片免费| 亚洲一区在线观看免费观看电影高清 | 成人h版在线观看| 国产亚洲欧美日韩日本| 国产电影精品久久禁18|