亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? more about the theoretical underpinnings of the bootstrap.htm

?? matlab bootstrap程序設計方法
?? HTM
?? 第 1 頁 / 共 3 頁
字號:
src="More about the theoretical underpinnings of the Bootstrap.files/img163.png" 
width=20 align=bottom border=0>, and we write <BR>
<P></P>
<DIV align=center><!-- MATH \begin{displaymath}Y_n \stackrel{\cal{ L}}{\longrightarrow} Y\end{displaymath} --><IMG 
height=31 
alt="\begin{displaymath}Y_n \stackrel{\cal{ L}}{\longrightarrow} Y\end{displaymath}" 
src="More about the theoretical underpinnings of the Bootstrap.files/img188.png" 
width=75 border=0> </DIV><BR clear=all>
<P></P>This does not mean that <IMG height=35 alt=$Y_n$ 
src="More about the theoretical underpinnings of the Bootstrap.files/img187.png" 
width=24 align=middle border=0> and <IMG height=16 alt=$Y$ 
src="More about the theoretical underpinnings of the Bootstrap.files/img163.png" 
width=20 align=bottom border=0> are arbitrarily close, think of the random 
variables <IMG height=37 alt="$U \sim U(0,1)$" 
src="More about the theoretical underpinnings of the Bootstrap.files/img189.png" 
width=101 align=middle border=0> and <IMG height=35 alt=$1-U$ 
src="More about the theoretical underpinnings of the Bootstrap.files/img190.png" 
width=52 align=middle border=0>. 
<P><FONT color=#ff0000>Convergence in Probability</FONT> <BR><BR>
<P></P>
<DIV align=center><!-- MATH \begin{displaymath}Y_n \stackrel{P}{\longrightarrow} Y \quad\forall \epsilon, P(|Y_n-c| < \epsilon) \longrightarrow 1\end{displaymath} --><IMG 
height=33 
alt="\begin{displaymath}Y_n \stackrel{P}{\longrightarrow} Y \quad&#10;\forall \epsilon, P(\vert Y_n-c\vert < \epsilon) \longrightarrow 1\end{displaymath}" 
src="More about the theoretical underpinnings of the Bootstrap.files/img191.png" 
width=294 border=0> </DIV><BR clear=all>
<P></P>
<P>Note: <BR>If 
<!-- MATH $k_n Y_n \stackrel{\cal{ L}}{\longrightarrow} H$ --><IMG height=50 
alt="$k_n Y_n \stackrel{\cal{ L}}{\longrightarrow} H$" 
src="More about the theoretical underpinnings of the Bootstrap.files/img192.png" 
width=102 align=middle border=0> where <IMG height=16 alt=$H$ 
src="More about the theoretical underpinnings of the Bootstrap.files/img185.png" 
width=22 align=bottom border=0> is a limit distribution and <!-- MATH $k_n\longrightarrow \infty$ --><IMG height=35 
alt="$k_n\longrightarrow \infty$" 
src="More about the theoretical underpinnings of the Bootstrap.files/img193.png" 
width=84 align=middle border=0> then <!-- MATH $Y_n \stackrel{P}{\longrightarrow} 0$ --><IMG height=50 
alt="$Y_n \stackrel{P}{\longrightarrow} 0$" 
src="More about the theoretical underpinnings of the Bootstrap.files/img194.png" 
width=75 align=middle border=0>. 
<H3><A name=SECTION00291200000000000000>Why is the empirical cdf <IMG height=45 
alt=$\hat{F}_n$ 
src="More about the theoretical underpinnings of the Bootstrap.files/img16.png" 
width=26 align=middle border=0> a good estimator of F?</A> </H3>We showed in 
class that for fixed real <IMG height=16 alt=$a$ 
src="More about the theoretical underpinnings of the Bootstrap.files/img195.png" 
width=14 align=bottom border=0> <BR>
<P></P>
<DIV align=center><!-- MATH \begin{displaymath}\sqrt{n}(\hat{F}_n(a)-F(a)) \stackrel{\cal{ L}}{\longrightarrow} \NN (0,F(a)(1-F(a)))\end{displaymath} --><IMG 
height=33 
alt="\begin{displaymath}\sqrt{n}(\hat{F}_n(a)-F(a)) \stackrel{\cal{ L}}{\longrightarrow} \NN (0,F(a)(1-F(a)))\end{displaymath}" 
src="More about the theoretical underpinnings of the Bootstrap.files/img196.png" 
width=345 border=0> </DIV><BR clear=all>
<P></P>Because of the result noted above, this also ensures that <!-- MATH $\hat{F}_n(a) \stackrel{P}{\longrightarrow} F(a)$ --><IMG height=50 
alt="$\hat{F}_n(a) \stackrel{P}{\longrightarrow} F(a)$" 
src="More about the theoretical underpinnings of the Bootstrap.files/img197.png" 
width=131 align=middle border=0>, this is actually true uniformly in <IMG 
height=16 alt=$a$ 
src="More about the theoretical underpinnings of the Bootstrap.files/img195.png" 
width=14 align=bottom border=0> because Kolmogorovs statistic is pivotal <BR>
<P></P>
<DIV align=center><!-- MATH \begin{displaymath}d(\hat{F}_n,F)=sup_{x} |\hat{F}_n(x)-F(x)| =D_n\end{displaymath} --><IMG 
height=33 
alt="\begin{displaymath}d(\hat{F}_n,F)=sup_{x} \vert\hat{F}_n(x)-F(x)\vert =D_n \end{displaymath}" 
src="More about the theoretical underpinnings of the Bootstrap.files/img198.png" 
width=299 border=0> </DIV><BR clear=all>
<P></P>has a distribution that does not depend on <IMG height=16 alt=$F$ 
src="More about the theoretical underpinnings of the Bootstrap.files/img1.png" 
width=19 align=bottom border=0>. 
<P>Definition: <BR>A statsitic is said to be pivotal if its distribution does 
not depend on any unknown parameters. 
<P>Example: Student's <IMG height=16 alt=$t$ 
src="More about the theoretical underpinnings of the Bootstrap.files/img199.png" 
width=11 align=bottom border=0> statistic. 
<H3><A name=SECTION00291300000000000000>Generalized Statistical Functionals</A> 
</H3>When we want to evaluate an estimator, construct confidence intervals, 
etc.. we are usually interested in evaluating quantities that are functions of 
both the unknown distribution <IMG height=16 alt=$F$ 
src="More about the theoretical underpinnings of the Bootstrap.files/img1.png" 
width=19 align=bottom border=0>, the empirical <IMG height=45 alt=$\hat{F}_n$ 
src="More about the theoretical underpinnings of the Bootstrap.files/img16.png" 
width=26 align=middle border=0> and the sample size, here are some examples: 
<OL>
  <LI>The sampling distribution of the error: <BR>
  <P></P>
  <DIV align=center><!-- MATH \begin{displaymath}\lambda_n(F,\hat{F}_n)=P_F(\sqrt{n}(\theta(\hat{F}_n)-\theta(F)))\end{displaymath} --><IMG 
  height=33 
  alt=\begin{displaymath}\lambda_n(F,\hat{F}_n)=P_F(\sqrt{n}(\theta(\hat{F}_n)-\theta(F)))\end{displaymath} 
  src="More about the theoretical underpinnings of the Bootstrap.files/img200.png" 
  width=285 border=0> </DIV><BR clear=all>
  <P></P>
  <LI>The bias: <BR>
  <P></P>
  <DIV align=center><!-- MATH \begin{displaymath}\lambda_n(F,\hat{F}_n)=E_F(\theta(\hat{F}_n))-\theta(F)\end{displaymath} --><IMG 
  height=33 
  alt=\begin{displaymath}\lambda_n(F,\hat{F}_n)=E_F(\theta(\hat{F}_n))-\theta(F)\end{displaymath} 
  src="More about the theoretical underpinnings of the Bootstrap.files/img201.png" 
  width=245 border=0> </DIV><BR clear=all>
  <P></P>
  <LI>The standard error: <BR>
  <P></P>
  <DIV align=center><!-- MATH \begin{displaymath}\lambda_n(F,\hat{F}_n)=\sqrt{E_F(\theta(\hat{F}_n)-\theta(F))^2}\end{displaymath} --><IMG 
  height=36 
  alt="\begin{displaymath}\lambda_n(F,\hat{F}_n)=\sqrt{E_F(\theta(\hat{F}_n)-\theta(F))^2}&#10;\end{displaymath}" 
  src="More about the theoretical underpinnings of the Bootstrap.files/img202.png" 
  width=271 border=0> </DIV><BR clear=all>
  <P></P></LI></OL>For each of these examples, what the bootstrap proposes is to 
replace <IMG height=16 alt=$F$ 
src="More about the theoretical underpinnings of the Bootstrap.files/img1.png" 
width=19 align=bottom border=0> by the empirical <IMG height=45 alt=$\hat{F}_n$ 
src="More about the theoretical underpinnings of the Bootstrap.files/img16.png" 
width=26 align=middle border=0>. 
<P>The bootstrap is said to <FONT color=#ff0000>work</FONT> if <BR>
<P></P>
<DIV align=center><!-- MATH \begin{displaymath}\lambda_n(\hat{F}_n,\hat{F}_n^*)-\lambda_n(F,\hat{F}_n)\stackrel{P}{\longrightarrow} 0\end{displaymath} --><IMG 
height=33 
alt="\begin{displaymath}\lambda_n(\hat{F}_n,\hat{F}_n^*)-\lambda_n(F,\hat{F}_n)\stackrel{P}{\longrightarrow} 0&#10;\end{displaymath}" 
src="More about the theoretical underpinnings of the Bootstrap.files/img203.png" 
width=236 border=0> </DIV><BR clear=all>
<P></P>
<H2><A name=SECTION00292000000000000000>Example and Counterexample</A> </H2>
<H3><A name=SECTION00292100000000000000>Bootstrap of the maximum</A> 
</H3>Suppose we have a random variable <IMG height=16 alt=$X$ 
src="More about the theoretical underpinnings of the Bootstrap.files/img162.png" 
width=22 align=bottom border=0> uniformly distributed on <IMG height=37 
alt=$(0,\theta)$ 
src="More about the theoretical underpinnings of the Bootstrap.files/img204.png" 
width=46 align=middle border=0> where <IMG height=17 alt=$\theta$ 
src="More about the theoretical underpinnings of the Bootstrap.files/img10.png" 
width=14 align=bottom border=0> is the unkown parameter that we wish to estimate 
and whose sampling distribution we would like to know. 
<H4><A name=SECTION00292110000000000000>Theoretical Analysis</A> </H4>We showed 
in class that if we take the largest value of a sample of size <IMG height=16 
alt=$n$ 
src="More about the theoretical underpinnings of the Bootstrap.files/img28.png" 
width=16 align=bottom border=0> to be the estimate of <IMG height=17 
alt=$\theta$ 
src="More about the theoretical underpinnings of the Bootstrap.files/img10.png" 
width=14 align=bottom border=0>, <!-- MATH $\hat{\theta}=X_{(n)}$ --><IMG 
height=45 alt=$\hat{\theta}=X_{(n)}$ 
src="More about the theoretical underpinnings of the Bootstrap.files/img205.png" 
width=74 align=middle border=0>, then <BR>
<P></P>
<DIV align=center><!-- MATH \begin{displaymath}P[\theta-c<X_{(n)}<\theta]=1-P[X_{(n)}<\theta-c]=1-(\frac{\theta-c}{\theta})^n\end{displaymath} --><IMG 
height=46 
alt="\begin{displaymath}&#10;P[\theta-c<X_{(n)}<\theta]=1-P[X_{(n)}<\theta-c]=1-(\frac{\theta-c}{\theta})^n&#10;\end{displaymath}" 
src="More about the theoretical underpinnings of the Bootstrap.files/img206.png" 
width=468 border=0> </DIV><BR clear=all>
<P></P>so that 
<!-- MATH $X_{(n)} \stackrel{P}{\longrightarrow} \theta$ --><IMG height=50 
alt="$X_{(n)} \stackrel{P}{\longrightarrow} \theta$" 
src="More about the theoretical underpinnings of the Bootstrap.files/img207.png" 
width=90 align=middle border=0> 
<P>As for the convergence in law: <BR>
<P></P>
<DIV align=center><!-- MATH \begin{displaymath}P[n(\theta-X_{(n)})\leq x]=(1-\frac{x}{\theta n})^n\end{displaymath} --><IMG 
height=41 
alt="\begin{displaymath}&#10;P[n(\theta-X_{(n)})\leq x]=(1-\frac{x}{\theta n})^n&#10;\end{displaymath}" 
src="More about the theoretical underpinnings of the Bootstrap.files/img208.png" 
width=258 border=0> </DIV><BR clear=all>
<P></P>and <BR>
<P></P>
<DIV align=center><!-- MATH \begin{displaymath}Distribution(X_{(n)})\longrightarrowH(x)=1-e^{-\frac{x}{\theta}},\mbox{ as } n\longrightarrow \infty\end{displaymath} --><IMG 
height=34 
alt="\begin{displaymath}Distribution(X_{(n)})\longrightarrow&#10;H(x)=1-e^{-\frac{x}{\theta}}&#10;,\mbox{ as } n\longrightarrow \infty&#10;\end{displaymath}" 
src="More about the theoretical underpinnings of the Bootstrap.files/img209.png" 

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
91在线porny国产在线看| 国产精品亚洲第一| 亚洲乱码国产乱码精品精小说| 久久久噜噜噜久久中文字幕色伊伊| 欧美精品免费视频| 91精品国产综合久久精品图片 | 国产激情视频一区二区三区欧美| 久久 天天综合| 国产麻豆9l精品三级站| 国产盗摄一区二区| 国产91精品一区二区麻豆网站| 成人毛片在线观看| 在线视频综合导航| 日韩欧美国产不卡| wwwwxxxxx欧美| 国产精品入口麻豆九色| 亚洲综合在线电影| 免费在线观看一区| 国产在线麻豆精品观看| 成人午夜av在线| 在线日韩av片| 精品欧美一区二区三区精品久久| 中文在线一区二区| 午夜精品久久久久久久久久久| 人人狠狠综合久久亚洲| 成人综合婷婷国产精品久久| 99久久久国产精品免费蜜臀| 欧美欧美欧美欧美| 久久色成人在线| 亚洲一区国产视频| 国产盗摄一区二区三区| 91黄色免费看| 精品国产91乱码一区二区三区 | 综合久久综合久久| 青青草原综合久久大伊人精品| 成人免费观看男女羞羞视频| 欧美日韩国产综合一区二区| 中文字幕欧美激情| 久久99精品视频| 欧美色涩在线第一页| 国产亚洲成aⅴ人片在线观看| 亚洲一区二区三区四区不卡| 国产激情视频一区二区三区欧美| 欧美日韩在线播| 中文字幕va一区二区三区| 日韩1区2区日韩1区2区| 91啦中文在线观看| 欧美成人官网二区| 午夜视频一区在线观看| 本田岬高潮一区二区三区| 欧美成人精品3d动漫h| 亚洲成精国产精品女| 91在线视频在线| 国产亚洲欧美色| 日本午夜精品视频在线观看 | 欧美成人一级视频| 亚洲一区二区三区四区不卡| 99久久精品一区二区| 国产欧美视频在线观看| 久久不见久久见免费视频1| 精品视频1区2区3区| 亚洲一区免费在线观看| 一本一道久久a久久精品| 国产精品成人免费精品自在线观看| 激情文学综合丁香| 日韩欧美国产1| 国内精品不卡在线| 久久综合国产精品| 久久99这里只有精品| 日韩手机在线导航| 麻豆专区一区二区三区四区五区| 69堂精品视频| 三级影片在线观看欧美日韩一区二区| 欧美亚洲综合色| 亚洲妇女屁股眼交7| 欧美群妇大交群中文字幕| 亚洲国产欧美另类丝袜| 欧洲精品中文字幕| 午夜激情一区二区| 日韩免费视频线观看| 国产尤物一区二区在线| 久久久久国产精品人| 成人av免费网站| 亚洲美女少妇撒尿| 欧美人体做爰大胆视频| 麻豆国产欧美一区二区三区| 26uuuu精品一区二区| 成人午夜在线播放| 亚洲欧美日韩中文播放| 欧美日韩一区不卡| 麻豆91小视频| 中国av一区二区三区| 91久久精品一区二区三| 亚洲成av人片在线| 久久久久久综合| 9i在线看片成人免费| 无码av免费一区二区三区试看| 日韩精品一区二区三区视频 | 日韩欧美黄色影院| 成人精品一区二区三区四区| 亚洲自拍偷拍综合| 精品国产区一区| av不卡在线播放| 日本中文字幕一区| 国产精品视频观看| 制服丝袜亚洲精品中文字幕| 国产伦精品一区二区三区视频青涩| 国产精品美女久久久久aⅴ国产馆 国产精品美女久久久久av爽李琼 国产精品美女久久久久高潮 | 国产尤物一区二区| 亚洲人妖av一区二区| 91精品国产色综合久久久蜜香臀| 国产成人自拍网| 视频一区视频二区中文| 亚洲欧美一区二区视频| 欧美成人精品福利| 精品1区2区3区| 成人性色生活片| 免费看欧美美女黄的网站| 亚洲精品日韩专区silk| 久久一区二区视频| 制服丝袜中文字幕亚洲| 99精品视频免费在线观看| 精品一区二区三区在线播放视频 | 欧美亚洲高清一区| 国产一区二区中文字幕| 亚洲第一主播视频| 亚洲欧美在线aaa| 国产丝袜在线精品| 91精品国产一区二区三区蜜臀| 色综合久久久久| 成人综合激情网| 国产精品资源网| 精品一区二区三区蜜桃| 日韩国产欧美在线播放| 亚洲精品视频在线| 日韩毛片视频在线看| 中文字幕av一区 二区| 久久嫩草精品久久久精品| 日韩欧美国产小视频| 欧美性受极品xxxx喷水| 91久久人澡人人添人人爽欧美| 波多野洁衣一区| av福利精品导航| 99re8在线精品视频免费播放| 国产成人精品aa毛片| 丰满少妇久久久久久久| 国产98色在线|日韩| 国产永久精品大片wwwapp| 久久99蜜桃精品| 激情久久五月天| 国产精品白丝jk黑袜喷水| 国产成人av一区二区| 高清不卡在线观看| eeuss鲁一区二区三区| 色妞www精品视频| 在线观看欧美黄色| 欧美日韩免费在线视频| 欧美久久久久久久久| 精品视频资源站| 欧美一个色资源| 国产三级一区二区| 综合自拍亚洲综合图不卡区| 亚洲久草在线视频| 五月天一区二区三区| 美女网站色91| 丁香婷婷综合网| 色88888久久久久久影院按摩| 欧美中文字幕一区二区三区| 3751色影院一区二区三区| 久久综合色8888| 最新国产成人在线观看| 亚洲成a人片综合在线| 激情六月婷婷综合| 91小视频免费观看| 91麻豆精品国产91久久久 | 国产福利一区二区| 97精品国产97久久久久久久久久久久| 色综合久久久久综合| 欧美一卡二卡在线观看| 国产精品久久一级| 日韩精品一二三区| 国产精品一区在线观看你懂的| 91麻豆国产精品久久| 日韩午夜激情av| 综合久久久久久久| 久久精品免费观看| 波多野洁衣一区| 日韩欧美中文字幕精品| 成人欧美一区二区三区小说| 日韩国产在线观看一区| 粉嫩aⅴ一区二区三区四区| 欧美男男青年gay1069videost| 久久久精品tv| 五月婷婷另类国产| 91欧美一区二区| 久久久蜜臀国产一区二区| 午夜在线电影亚洲一区| 91毛片在线观看| 久久久99精品免费观看| 日本成人中文字幕在线视频 |