亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? more about the theoretical underpinnings of the bootstrap.htm

?? matlab bootstrap程序設計方法
?? HTM
?? 第 1 頁 / 共 3 頁
字號:
width=434 border=0> </DIV><BR clear=all>
<P></P>So that the sampling distribution of the maximum tends to be exponential, 
and depends on the unknown parameter. 
<P>I backed this up with a simulation experiment, I generated radnom uniforms 
from (0,1) and then multiplied them by 5 to simulate a U(0,5) distribution, I 
then computed many samples of size 15 from this distribution and took the 
maximums. <PRE>&gt;&gt; rand(3,10)                                       
ans =
  Columns 1 through 6
0.5804  0.8833  0.3863  0.2362  0.2711  0.6603   
0.7468  0.1463  0.9358  0.9170  0.8861  0.1625   
0.0295  0.8030  0.7004  0.2994  0.4198  0.0537   
  Columns 7 through 10 
 0.3936   0.6143    0.8899    0.2002
 0.4927   0.4924    0.0578    0.3766
 0.2206   0.8396    0.2538    0.0489
&gt;&gt; [v,i]=max(test1)
v =
Columns 1 through 7 
0.7468 0.8833 0.9358 0.9170 0.8861 0.6603 0.4927
Columns 8 through 10 
 0.8396    0.8899   0.3766
i =
  2   1    2    2     2     1   2   3   1   2

----------------------------------------------
function v=smaxi(B,n,maxi)
%Simulation of the uniform distribution
%on (0,maxi) with estimation of the maximum
%Samples of size n, B simulations
rands=maxi*rand(n,B);
[v,i]=max(rands);
--------------------------------------------

mm=smaxi(10000,15,5);
hist(mm,40)
</PRE>
<P>This is what the histogram looks like: <BR><IMG 
src="More about the theoretical underpinnings of the Bootstrap.files/pmax2.gif" 
width=400 ,> 
<P>As can be seen although the sample size was not very big, the sampling 
distribution is already quite close to exponential. 
<P>In the boosttrap example, we satrt with a given sample, sample1, that we will 
resample 10,000 times computing 10,000 maxima. We do not use loops but rather 
matrices that are more efficient both in Splus and matlab. 
<TABLE width=311>
  <TBODY>
  <TR>
    <TD><B>Non parametric Bootstrap</B> <PRE>sample1=(5*rand(15,1));
  Columns 1 through 7 
1.1892 3.0412 4.4574 4.6107 4.6531 1.6721 3.9533
  Columns 8 through 14 
2.4167 2.7374 1.9671 2.7069 1.6799 2.4536 4.0456
  Column 15 
3.2760
&gt;&gt; [v,i]=max(sample1)
v =    4.6531
i =     5
&gt;&gt; indices=randint(n,B,n)+1 
indices =
   13    1   13    1    7   5     9   10    9    7
    2    6    1    6    8   3     1    3    2    4
   13   11    1    1    6   1    14   15    1    7
    6   10    1    5    9   7     4    1    5    5
   10   12    3    2    7   4    15   11   15   13
    2    2    3   14   12  10     8    4    9    9
   10   14    3    1    6  15     9   10    6    9
    2    6    6    9    1  11     3   13   12    8
    1    2    9    6   13   4     7    1   14   15
    9    9   14    6    1   9    14    3   15    3
    5   13    5    6   11  11    15    4    4   13
   10    8   12   14   14   7     7    4    9    7
    2    2    4   11    5   1     4    2    3    4
   13    5   10    7    8   4    13    3    9    1
   15    7    2    1    7   9    11   12    6    6
[out,i]= max(orig(indices))
  Columns 1 through 7 
4.6531    4.6531    4.6531  4.6531  4.6531  4.6531  4.6107
  Columns 8 through 10 
4.6107    4.6531    4.6531
function out=bmax(B,orig)
%Function to bootstrap the maximum
     [n,p]=size(orig);
     indices=randint(n,B,n)+1;
     [out,i]= max(orig(indices));
</PRE>
      <P>This is what the histogram looks like: <BR><IMG 
      src="More about the theoretical underpinnings of the Bootstrap.files/nmax.gif" 
      width=400 ,> <BR>This shows a definite point mass at the sample maximum. 
      In fact we can prove that the sample maximum has a point mass that stays 
      large, whatever the sample size, because: <BR>
      <P></P>
      <DIV align=center><!-- MATH \begin{displaymath}1-P(X_{(n)}^*=X_{(n)})=1-P((X_{(n)} \in\mbox{${\cal X}$}_n^*=1-(1-\frac{1}{n})^n\simeq 1-e^{-1}\end{displaymath} --><IMG 
      height=45 
      alt="\begin{displaymath}1-P(X_{(n)}^*=X_{(n)})=1-P((X_{(n)} \in&#10;\mbox{${\cal X}$}_n^*=1-(1-\frac{1}{n})^n\simeq 1-e^{-1}\end{displaymath}" 
      src="More about the theoretical underpinnings of the Bootstrap.files/img210.png" 
      width=540 border=0> </DIV><BR clear=all>
      <P></P></TD></TR></TBODY></TABLE>There are several ways to fix this, Jo Romano 
has suggested a <IMG height=35 alt=$k-out-of-n$ 
src="More about the theoretical underpinnings of the Bootstrap.files/img211.png" 
width=143 align=middle border=0> bootstrap and we could also use the extra 
information contained in the fact that we supposed that we knew what form the 
distribution was originally, ie Uniform, although the parameter is supposed 
unknown. This is also a plug in method, but called the parametric bootstrap. 
<H2><A name=SECTION00293000000000000000>Parametric Bootstrap</A> </H2>
<P>Knowing that the distribution function <IMG height=16 alt=$F$ 
src="More about the theoretical underpinnings of the Bootstrap.files/img1.png" 
width=19 align=bottom border=0> is restricted to a certain parametric family can 
help alot. 
<P>
<H3><A name=SECTION00293100000000000000>Maximum</A> </H3>
<P>Suppose that we want to do the maximum, still knowing that in fact the sample 
was drawn from a uniform with unkown upper bound <IMG height=17 alt=$\theta$ 
src="More about the theoretical underpinnings of the Bootstrap.files/img10.png" 
width=14 align=bottom border=0>. We would be better off to generate many samples 
from the Uniform(0,<IMG height=22 alt=$\hat{\theta}$ 
src="More about the theoretical underpinnings of the Bootstrap.files/img212.png" 
width=14 align=bottom border=0>), and look at the distribution of the maximum, 
there will of course be a slight bias to the left, but the distribution will be 
of the right form. 
<H3><A name=SECTION00293200000000000000>Correlation Coefficient</A> </H3>Suppose 
that in the law school data, the random variables <IMG height=33 alt=$y,z$ 
src="More about the theoretical underpinnings of the Bootstrap.files/img213.png" 
width=32 align=middle border=0> are known to be Normal, with some unknown 
covariance structure, with correlation coefficient <IMG height=33 alt=$\rho$ 
src="More about the theoretical underpinnings of the Bootstrap.files/img214.png" 
width=14 align=middle border=0>. 
<P>Instead of new data by resampling we can generate new data by generating 
samples from the bivariate Normal, however we will have to plug in an estimate 
for the variance/covariance structure obtained from the original data. 
<P><B>Parametric Simulation</B> <PRE>&gt;&gt; c=sqrt((1-.776^2)/.776^2)
c =    0.8128
function [ys,zs]=gennorm(B,my,mz,sy,sz,c)
%Simulation of the normal distribution
%with sy2,sz2,rho the variances and correlation
%C=sqrt((1-rho^2)/rho^2)
%and (my,mz) as the means
%B simulations
rs=randn(B,2);
r1=rs(:,1);
r2=rs(:,2);
ys=my+sy*r1;
zs=mz+(sz/(1+c^2))*(r1+c*r2);
&gt;&gt; [ys,zs]=gennorm(1000,my,mz,sy,sz,c);
&gt;&gt; corrcoef(ys,zs)
ans =
    1.0000    0.7558
    0.7558    1.0000
</PRE>
<P>This is what the points looks like: <BR><IMG 
src="More about the theoretical underpinnings of the Bootstrap.files/normscat.gif" 
width=500 ,> <BR>
<P><B>Parametric Bootstrap Simulations</B> <PRE> y=law15(:,1)
 z=law15(:,2)
&gt;&gt; mz=mean(z)
mz =
    3.0947
&gt;&gt; my=mean(y)
my =
  600.2667
&gt;&gt; var(z)
ans =    0.0593
&gt;&gt; var(y)
ans =   1.7468e+03
&gt;&gt; corrcoef(y,z)
ans =
    1.0000    0.7764
    0.7764    1.0000
&gt;&gt; cov(y,z)
ans =
   1.0e+03 *
    1.7468    0.0079
    0.0079    0.0001
&gt;&gt; sy=sqrt(var(y))
sy =   41.7945
&gt;&gt; sz=sqrt(var(z))
sz =
    0.2435
corrs=zeros(1,1000); 
for b=(1:1000)
[ys,zs]=gennorm(15,my,mz,sy,sz,c);
cor=corrcoef(ys,zs);    
corrs(b)=cor(1,2);
end
&gt;&gt; hist(corrs,40)
</PRE>
<P>This is what the histogram looks like: <BR><IMG 
src="More about the theoretical underpinnings of the Bootstrap.files/pcorr.gif" 
width=500 ,> <BR>
<P>Here, you can compare to the 'true' sampling distribution for the law school 
data as obtained by sampling without replacement 100,000 times from the original 
82 observation population. 
<P><IMG 
src="More about the theoretical underpinnings of the Bootstrap.files/true82.gif" 
width=500 ,> 
<P>
<HR>
<!--Navigation Panel--><A 
href="http://www-stat.stanford.edu/~susan/courses/s208/node16.html" 
name=tex2html355><IMG height=24 alt=next 
src="More about the theoretical underpinnings of the Bootstrap.files/next.png" 
width=37 align=bottom border=0></A> <A 
href="http://www-stat.stanford.edu/~susan/courses/s208/node6.html" 
name=tex2html353><IMG height=24 alt=up 
src="More about the theoretical underpinnings of the Bootstrap.files/up.png" 
width=26 align=bottom border=0></A> <A 
href="http://www-stat.stanford.edu/~susan/courses/s208/node14.html" 
name=tex2html347><IMG height=24 alt=previous 
src="More about the theoretical underpinnings of the Bootstrap.files/prev.png" 
width=63 align=bottom border=0></A> <BR><B>Next:</B> <A 
href="http://www-stat.stanford.edu/~susan/courses/s208/node16.html" 
name=tex2html356>The jackknife</A> <B>Up:</B> <A 
href="http://www-stat.stanford.edu/~susan/courses/s208/node6.html" 
name=tex2html354>Lectures</A> <B>Previous:</B> <A 
href="http://www-stat.stanford.edu/~susan/courses/s208/node14.html" 
name=tex2html348>Monte Carlo</A> <!--End of Navigation Panel-->
<ADDRESS>Susan Holmes 2004-05-19 </ADDRESS></BODY></HTML>

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲日本在线a| 激情六月婷婷久久| 另类小说综合欧美亚洲| 99久久99久久精品免费观看| 欧美一级xxx| 一区二区三区日韩欧美精品| 国产在线观看一区二区| 欧美精品v国产精品v日韩精品| 国产精品久久三| 激情丁香综合五月| 欧美一区二区视频在线观看2022| 亚洲精品视频在线看| 成人激情文学综合网| 国产欧美日韩另类一区| 美女视频一区二区| 欧美一区二区视频在线观看2022| 亚洲图片欧美一区| 在线免费观看视频一区| 中文天堂在线一区| 成人中文字幕在线| 国产视频在线观看一区二区三区| 精品在线播放免费| 精品久久一二三区| 国产一区二区在线观看免费| 日韩欧美精品在线| 精品亚洲aⅴ乱码一区二区三区| 8x8x8国产精品| 日本视频免费一区| 69成人精品免费视频| 午夜婷婷国产麻豆精品| 欧美在线观看一区二区| 亚洲国产日韩一级| 欧美精品vⅰdeose4hd| 日韩电影在线观看电影| 日韩欧美国产综合在线一区二区三区 | 欧美三级一区二区| 一区二区三区中文字幕电影| 色老综合老女人久久久| 亚洲一区二区三区爽爽爽爽爽 | 欧美电影在线免费观看| 亚洲成av人**亚洲成av**| 欧美美女bb生活片| 日本麻豆一区二区三区视频| 欧美成人女星排行榜| 国产一区啦啦啦在线观看| 国产目拍亚洲精品99久久精品| 国产91富婆露脸刺激对白| 国产精品久久毛片| 欧洲国内综合视频| 美日韩黄色大片| 中文字幕不卡一区| 欧美综合色免费| 免费高清视频精品| 中文一区二区在线观看| 91免费视频网址| 日本在线观看不卡视频| 久久久久97国产精华液好用吗| 懂色av一区二区三区免费看| 亚洲欧美电影院| 日韩欧美亚洲国产另类| 成人av在线一区二区| 亚洲一线二线三线视频| 欧美xfplay| 一本大道综合伊人精品热热| 免费在线观看一区| 亚洲欧美aⅴ...| 日韩精品一区二区三区视频在线观看 | 亚洲一区二区综合| 久久亚洲精精品中文字幕早川悠里 | 精品日韩欧美在线| 色综合久久六月婷婷中文字幕| 丝袜美腿亚洲一区| 国产精品传媒在线| 精品久久人人做人人爽| 色噜噜狠狠成人网p站| 国产九九视频一区二区三区| 亚洲国产精品久久久久秋霞影院 | 成人免费视频网站在线观看| 亚洲无人区一区| 国产精品美女一区二区| 日韩免费观看2025年上映的电影| caoporen国产精品视频| 久久精品国产精品亚洲精品| 亚洲精品免费在线观看| 久久香蕉国产线看观看99| 欧美剧在线免费观看网站 | 欧美一级黄色大片| 色一情一乱一乱一91av| 国产精品99久久久久久宅男| 无码av免费一区二区三区试看 | 91蜜桃在线观看| 国产成a人亚洲精品| 青青草国产成人99久久| 亚洲午夜av在线| 亚洲精品伦理在线| 中文字幕av资源一区| 久久综合久久久久88| 欧美一区二区三区免费在线看| av日韩在线网站| 成人午夜又粗又硬又大| 国产老肥熟一区二区三区| 久久99国产精品久久99果冻传媒 | 一区视频在线播放| 久久理论电影网| xvideos.蜜桃一区二区| 日韩一区二区三区三四区视频在线观看| 日本久久一区二区三区| www.欧美精品一二区| 成人黄色免费短视频| 国产成人av一区二区三区在线 | 蜜臀av性久久久久蜜臀aⅴ| 亚洲高清久久久| 亚洲bdsm女犯bdsm网站| 亚洲一区二区三区四区不卡| 夜夜夜精品看看| 午夜激情久久久| 秋霞午夜av一区二区三区| 日韩影院免费视频| 久久国产婷婷国产香蕉| 久久国产麻豆精品| 国产99精品在线观看| 从欧美一区二区三区| aaa亚洲精品| 色呦呦日韩精品| 欧美日本精品一区二区三区| 91 com成人网| 久久精品视频免费| 亚洲欧洲精品一区二区三区不卡| 中文字幕在线观看不卡| 樱桃国产成人精品视频| 石原莉奈一区二区三区在线观看 | 久久这里只有精品6| 国产欧美1区2区3区| 亚洲欧美综合色| 亚洲国产中文字幕在线视频综合| 天天综合色天天综合色h| 国内精品嫩模私拍在线| www.在线欧美| 538在线一区二区精品国产| 欧美精品一区二区三区高清aⅴ| 久久久99久久| 亚洲国产综合91精品麻豆| 狠狠色丁香婷婷综合| 99精品热视频| 欧美一级二级三级蜜桃| 国产精品国产三级国产普通话三级 | 亚洲一区二区三区视频在线| 蜜臀av在线播放一区二区三区| 国产精品1024久久| 欧美日韩国产在线观看| 国产亚洲成年网址在线观看| 亚洲精品综合在线| 国内精品视频一区二区三区八戒| 99久久精品情趣| 日韩限制级电影在线观看| 国产精品久久久久久久久免费樱桃| 一区二区三区在线视频播放| 久久狠狠亚洲综合| 欧美在线短视频| 国产日韩欧美a| 日本aⅴ免费视频一区二区三区 | 床上的激情91.| 制服丝袜亚洲色图| 专区另类欧美日韩| 国内欧美视频一区二区| 欧美日韩国产美| 国产精品久久久久久久久免费樱桃| 手机精品视频在线观看| 国产69精品一区二区亚洲孕妇| 欧美日韩大陆在线| 日韩毛片一二三区| 风间由美一区二区三区在线观看 | 亚洲少妇30p| 国产老肥熟一区二区三区| 欧美另类变人与禽xxxxx| 亚洲欧美日韩综合aⅴ视频| 国产伦精一区二区三区| 欧美一区二区三区视频在线| 伊人一区二区三区| av在线不卡电影| 欧美韩国日本不卡| 国产一区二区在线看| 欧美不卡视频一区| 日本sm残虐另类| 欧美一区二区福利在线| 亚洲不卡在线观看| 欧美日韩视频在线第一区 | 国产成人综合网| 久久久午夜精品| 国产一区二区在线电影| 欧美精品一区二区三区蜜臀| 麻豆成人综合网| 精品精品国产高清一毛片一天堂| 免费成人性网站| 欧美大胆一级视频| 老司机精品视频导航| 精品国偷自产国产一区| 国产在线国偷精品产拍免费yy| 精品日韩一区二区| 国产精品一色哟哟哟|