?? arith.asm
字號:
;
; Performance :
; Program Memory : 22 (excluding D_divS subroutine)
; Clock Cycles : 3000 (approximately,with 10 iterations)
;
; The #of cycles depends on Number of Iterations Selected.
; In a lot of cases 5 or less iterations may be sufficient
;
;
;*******************************************************************
; Newton-Raphson Method
;*************************************************************
Sqrt
call SqrtInit ; compute initial sqrt = Num/2
nextIter
#if MODE_FAST
movfp NumLo,ACCbLO
movfp NumHi,ACCbHI
#else
movfp NumLo,wreg
movwf ACCbLO
movfp NumHi,wreg
movwf ACCbHI
#endif
;
call D_divS ; double precision division
; double precision addition
movfp ACCdLO,wreg ; ACCd + ACCa -> ACCd
addwf ACCaLO ;addwf lsb
movfp ACCdHI,wreg
addwfc ACCaHI ;addwf msb
; now divide by 2
bcf _carry
rrcf ACCaHI
rrcf ACCaLO
;
decfsz iterCnt
goto nextIter
return ; End Sqrt
;
SqrtInit
movlw _LUPCNT
movwf iterCnt ; set number of iterations
#if MODE_FAST
movfp NumHi,ACCaHI
movfp NumLo,ACCaLO
#else
movfp NumHi,wreg
movwf ACCaHI
movfp NumLo,wreg ; set initial guess root = NUM/2
movwf ACCaLO
#endif
bcf _carry
rrcf ACCaHI
rrcf ACCaLO ; set initial sqrt = Num/2
return
;
PAGE
;*******************************************************************
; 8x8 Software Multiplier
; ( Fast Version : Straight Line Code )
;
; The 16 bit result is stored in 2 bytes
;
; Before calling the subroutine " mpy ", the multiplier should
; be loaded in location " mulplr ", and the multiplicand in
; " mulcnd " . The 16 bit result is stored in locations
; H_byte & L_byte.
;
; Performance :
; Program Memory : 36 words
; # of cycles : 36 (excluding call & return)
; Scratch RAM : 0 locations
; W Register : Used
;
; This routine is optimized for speed efficiency ( straight line code )
; For code efficiency, refer to "mult8x8S.asm" ( looped code )
;*******************************************************************
; Define a macro for adding & right shifting
;
multiply MACRO
variable i ;
i = 0
.while i < 8
btfsc mulplr,i
addwf H_byte
rrcf H_byte
rrcf L_byte
i = i+1 ;
.endw
ENDM ; End of macro
;
;
mpy8x8_F
clrf H_byte
clrf L_byte
movfp mulcnd,wreg ; move the multiplicand to W reg.
bcf _carry ; Clear the carry bit in the status Reg.
;
multiply
;
return
;
PAGE
;*******************************************************************
; 8x8 Software Multiplier
; ( Code Efficient : Looped Code )
;
; The 16 bit result is stored in 2 bytes
;
; Before calling the subroutine " mpy ", the multiplier should
; be loaded in location " mulplr ", and the multiplicand in
; " mulcnd " . The 16 bit result is stored in locations
; H_byte & L_byte.
;
; Performance :
; Program Memory : 13 words (excluding call & return)
; # of cycles : 69 (excluding call & return)
; Scratch RAM : 1 byte
; W Register : Used
;
; This routine is optimized for code efficiency ( looped code )
; For time efficiency code refer to "mult8x8F.asm" ( straight line code )
;*******************************************************************
;
mpy8x8_S
clrf H_byte
clrf L_byte
clrf count
bsf count,3 ; set count = 8
movfp mulcnd,wreg
bcf _carry ; Clear the carry bit in the status Reg.
loop
btfsc mulplr,0
addwf H_byte
rrcf H_byte
rrcf L_byte
rrncf mulplr
decfsz count
goto loop
;
return
;
PAGE
;*******************************************************************
; Numerical Differenciation
;
; The so called "Three-Point Formula" is implemented to
; differenciate a sequence of points (uniformly sampled).
; The eqn implemented is :
; f'(Xn) = [ f(Xn - 2h) - 4*f(Xn - h) + 3*f(Xn)]*0.5/h
; where Xn is the present sample and 'h' is the step size.
;
; The above formula may be rewritten as :
;
; f'(Xn) = [ 0.5*f(Xn -2) - 2*f(Xn - 1) + 0.5*3*f(Xn)]*1/DiffK
; where DiffK = h = Step Size
;
; This differenciation routine can be used very effectively
; in the computation of the differential component part in
; a PID Loop calculation in Motor Control Applications
;
; Double precision arithmetic is used throught
; The present sample value is assumed to be in locations
; (XnHi, XnLo). The past two values are assumed to be in locations
; (Xn_1_Hi, Xn_1_Lo) & (Xn_2_Hi, Xn_2_Lo).
; The output value is located in DiffHi & DiffLo. No overflow
; checking mechanism is implemented. If the values are limited
; to 12 bits, then the user need not worry about overflows
;
; It is user's responsibility to update the past values with the
; present values before calling this routine.
; After computation, the present value Xn is not moved to Xn_1
; because the user may want these values to be intact for other
; computations ( say numerical integration)
; Also it is user's responsibility to set past 2 values
; (Xn_1 & Xn_2) values to be zero on initialization.
;
;*******************************************************************
;
Diff
movfp Xn_2_Lo,wreg
addwf XnLo,w
movwf ACCbLO
movfp Xn_2_Hi,wreg
addwfc XnHi,w
movwf ACCbHI ; Y = f(Xn-2) + f(Xn)
;
movfp XnLo,wreg
addwf ACCbLO
movfp XnHi,wreg
addwfc ACCbHI
movfp XnLo,wreg
addwf ACCbLO
movfp XnHi,wreg
addwfc ACCbHI ; Y = f(Xn-2) + 3*f(Xn)
;
bcf _carry
rrcf ACCbHI
rrcf ACCbLO ; Y = 0.5*[ f(Xn-2) + 3*f(Xn) ]
;
movfp Xn_1_Lo,wreg
subwf ACCbLO
movfp Xn_1_Hi,wreg
subwfb ACCbHI
movfp Xn_1_Lo,wreg
subwf ACCbLO
movfp Xn_1_Hi,wreg
subwfb ACCbHI ; Y = 0.5*[f(Xn-2) + 3*f(Xn)] - 2*f(Xn-1)
;
movfp DiffKLo,wreg
movwf ACCaLO
movfp DiffKHi,wreg
movwf ACCaHI
;
call D_divS
movfp ACCbLO,wreg
movwf DiffLo
movfp ACCbHI,wreg
movwf DiffHi ; result = Y/h
;
return
;
PAGE
;*******************************************************************
;
; Numerical Integration
;
;
; Simpson's Three-Eighths Rule is implemented
;
; Y(n) = [ f(X0) + 3*f(X1) + 3*f(X2) + f(X3)]*3*h/8
;
; where 'h' is the step size and the integral is over the
; range X0 to X3
; The above equation can be rewritten as
;
; Y(n) = [ f(X0) + 3*f(X1) + 3*f(X2) + f(X3)]*IntgK
;
; where IntgK = 3*h/8 (in locations (IntgKHi, IntgKHi)
;
; This Integration routine can be used very effectively
; in the computation of the integral component part in
; a PID Loop calculation in Motor Control Applications
;
; Double precision arithmetic is used throught
; The three input values over which the integral is to be computed
; are assumed to be in locations (X0Lo,X0Hi), (X1Lo,X1Hi) , (X2Lo,X2Hi)
; and (X3Lo,X3Hi)
; The output value is located in IntgHi & IntgLo. No overflow
; checking mechanism is implemented. If the values are limited
; to 12 bits, then the user need not worry about overflows
;
; It is user's responsibility to update the past values with the
; present values before calling this routine.
; After computation, the present value Xn is not moved to Xn_1
; because the user may want these values to be intact for other
; computations ( say numerical integration)
; Also it is user's responsibility to set past 2 values
; (Xn_1 & Xn_2) values to be zero on initialization.
;
;
;*******************************************************************
;
Integrate
movfp X0Lo,wreg
addwf X3Lo,w
movwf ACCbLO
movfp X0Hi,wreg
addwfc X3Hi,w
movwf ACCbHI ; Intg = f(X0) + f(X3)
;
movfp X1Lo,wreg
addwf ACCbLO
movfp X1Hi,wreg
addwfc ACCbHI ; Intg = f(X0) + f(X3) +X1
movfp X1Lo,wreg
addwf ACCbLO
movfp X1Hi,wreg
addwfc ACCbHI ; Intg = f(X0) + f(X3) +2*X1
movfp X1Lo,wreg
addwf ACCbLO
movfp X1Hi,wreg
addwfc ACCbHI ; Intg = f(X0) + f(X3) +3*X1
;
movfp X2Lo,wreg
addwf ACCbLO
movfp X2Hi,wreg
addwfc ACCbHI ; Intg = f(X0) + f(X3) +3*X1 + X2
movfp X2Lo,wreg
addwf ACCbLO
movfp X2Hi,wreg
addwfc ACCbHI ; Intg = f(X0) + f(X3) +3*X1 + 2*X2
movfp X2Lo,wreg
addwf ACCbLO
movfp X2Hi,wreg
addwfc ACCbHI ; Intg = f(X0) + f(X3) +3*X1 + 3*X2
;
movfp IntgKLo,wreg
movwf ACCaLO
movfp IntgKHi,wreg
movwf ACCaHI ; ACCa = IntgK (prepare for multiplication)
;
call D_mpyS ; make sure to set for either SIGNED or UNSIGNED
movfp ACCdLO,wreg
movwf IntgLo ; 32 bit result in ACCd & ACCc
movfp ACCdHI,wreg
movwf IntgHi ; upper 16 bits = result
;
return
;
PAGE
;*******************************************************************
;
; Random Number Generator
;
; This routine generates a 16 Bit Pseudo Sequence Random Generator
; It is based on Linear shift register feedback. The sequence
; is generated by (Q15 xorwf Q14 xorwf Q12 xorwf Q3 )
;
; The 16 bit random number is in location RandHi(high byte)
; & RandLo (low byte)
;
; Before calling this routine, make sure the initial values
; of RandHi & RandLo are NOT ZERO
; A good chiose of initial random number is 0x3045
;*******************************************************************
;
Random16
rlcf RandHi,w
xorwf RandHi,w
rlcf wreg ; carry bit = xorwf(Q15,14)
;
swapf RandHi
swapf RandLo,w
rlncf wreg
xorwf RandHi,w ; LSB = xorwf(Q12,Q3)
swapf RandHi
andlw 0x01
rlcf RandLo
xorwf RandLo
rlcf RandHi
return
;
PAGE
;*******************************************************************
; Gaussian Noise Generator
;
; This routine generates a 16 Bit Gaussian distributed random
; points. This routine calls the routine "Random16", which
; generates a psuedo random noise sequence. Gaussian noise
; is computed using the CENTRAL LIMIT THEOREM.
; The Central Limit Theorem states that the average weighted
; sum of uncorelated samples tends to have a Gaussian distribution
; For practical purposes, the sum could be over a sample size
; of 32 Random numbers. Better results could result if a larger
; sample size is desired. For faster results, a sum over 16 samples
; would also be adequate ( say, for applications like Speech synthesis,
; channel simulations, etc).
;
; The 16 bit Gaussian distributed point is in locations
; GaussHi & GaussLo
;
; Before calling this routine, the initial seed of Random
; number should be NON ZERO ( refer to notes on "Random16" routine
;
;*******************************************************************
;
Gauss
clrf count
bsf count,5 ; set Sample size = 32
clrf GaussLo
clrf GaussHi
clrf GaussTmp
;
NextGauss
call Random16 ; get a random value
movfp RandLo,wreg
addwf GaussLo
movfp RandHi,wreg
addwfc GaussHi
clrf wreg
addwfc GaussTmp
decfsz count
goto NextGauss ; sum 16 random numbers
;
movlw 5
GaussDiv16
rrcf GaussTmp
rrcf GaussHi
rrcf GaussLo ; weghted average
decfsz wreg ; divide by 32
goto GaussDiv16
;
return
;
END ; End Of arith.asm
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -