亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? sfp-machine.h

?? ARM8008光盤linux-kernel
?? H
字號:
/* * BK Id: SCCS/s.sfp-machine.h 1.5 05/17/01 18:14:23 cort *//* Machine-dependent software floating-point definitions.  PPC version.   Copyright (C) 1997 Free Software Foundation, Inc.   This file is part of the GNU C Library.   The GNU C Library is free software; you can redistribute it and/or   modify it under the terms of the GNU Library General Public License as   published by the Free Software Foundation; either version 2 of the   License, or (at your option) any later version.   The GNU C Library is distributed in the hope that it will be useful,   but WITHOUT ANY WARRANTY; without even the implied warranty of   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU   Library General Public License for more details.   You should have received a copy of the GNU Library General Public   License along with the GNU C Library; see the file COPYING.LIB.  If   not, write to the Free Software Foundation, Inc.,   59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.     Actually, this is a PPC (32bit) version, written based on the   i386, sparc, and sparc64 versions, by me,    Peter Maydell (pmaydell@chiark.greenend.org.uk).   Comments are by and large also mine, although they may be inaccurate.   In picking out asm fragments I've gone with the lowest common   denominator, which also happens to be the hardware I have :->   That is, a SPARC without hardware multiply and divide. *//* basic word size definitions */#define _FP_W_TYPE_SIZE		32#define _FP_W_TYPE		unsigned long#define _FP_WS_TYPE		signed long#define _FP_I_TYPE		long#define __ll_B			((UWtype) 1 << (W_TYPE_SIZE / 2))#define __ll_lowpart(t)		((UWtype) (t) & (__ll_B - 1))#define __ll_highpart(t)	((UWtype) (t) >> (W_TYPE_SIZE / 2))/* You can optionally code some things like addition in asm. For * example, i386 defines __FP_FRAC_ADD_2 as asm. If you don't * then you get a fragment of C code [if you change an #ifdef 0 * in op-2.h] or a call to add_ssaaaa (see below). * Good places to look for asm fragments to use are gcc and glibc. * gcc's longlong.h is useful. *//* We need to know how to multiply and divide. If the host word size * is >= 2*fracbits you can use FP_MUL_MEAT_n_imm(t,R,X,Y) which * codes the multiply with whatever gcc does to 'a * b'. * _FP_MUL_MEAT_n_wide(t,R,X,Y,f) is used when you have an asm  * function that can multiply two 1W values and get a 2W result.  * Otherwise you're stuck with _FP_MUL_MEAT_n_hard(t,R,X,Y) which * does bitshifting to avoid overflow. * For division there is FP_DIV_MEAT_n_imm(t,R,X,Y,f) for word size * >= 2*fracbits, where f is either _FP_DIV_HELP_imm or  * _FP_DIV_HELP_ldiv (see op-1.h). * _FP_DIV_MEAT_udiv() is if you have asm to do 2W/1W => (1W, 1W). * [GCC and glibc have longlong.h which has the asm macro udiv_qrnnd * to do this.] * In general, 'n' is the number of words required to hold the type, * and 't' is either S, D or Q for single/double/quad. *           -- PMM *//* Example: SPARC64: * #define _FP_MUL_MEAT_S(R,X,Y)	_FP_MUL_MEAT_1_imm(S,R,X,Y) * #define _FP_MUL_MEAT_D(R,X,Y)	_FP_MUL_MEAT_1_wide(D,R,X,Y,umul_ppmm) * #define _FP_MUL_MEAT_Q(R,X,Y)	_FP_MUL_MEAT_2_wide(Q,R,X,Y,umul_ppmm) * * #define _FP_DIV_MEAT_S(R,X,Y)	_FP_DIV_MEAT_1_imm(S,R,X,Y,_FP_DIV_HELP_imm) * #define _FP_DIV_MEAT_D(R,X,Y)	_FP_DIV_MEAT_1_udiv(D,R,X,Y) * #define _FP_DIV_MEAT_Q(R,X,Y)	_FP_DIV_MEAT_2_udiv_64(Q,R,X,Y) * * Example: i386: * #define _FP_MUL_MEAT_S(R,X,Y)   _FP_MUL_MEAT_1_wide(S,R,X,Y,_i386_mul_32_64) * #define _FP_MUL_MEAT_D(R,X,Y)   _FP_MUL_MEAT_2_wide(D,R,X,Y,_i386_mul_32_64) * * #define _FP_DIV_MEAT_S(R,X,Y)   _FP_DIV_MEAT_1_udiv(S,R,X,Y,_i386_div_64_32) * #define _FP_DIV_MEAT_D(R,X,Y)   _FP_DIV_MEAT_2_udiv_64(D,R,X,Y) */#define _FP_MUL_MEAT_S(R,X,Y)   _FP_MUL_MEAT_1_wide(S,R,X,Y,umul_ppmm)#define _FP_MUL_MEAT_D(R,X,Y)   _FP_MUL_MEAT_2_wide(D,R,X,Y,umul_ppmm)#define _FP_DIV_MEAT_S(R,X,Y)   _FP_DIV_MEAT_1_udiv(S,R,X,Y)#define _FP_DIV_MEAT_D(R,X,Y)   _FP_DIV_MEAT_2_udiv_64(D,R,X,Y)/* These macros define what NaN looks like. They're supposed to expand to  * a comma-separated set of 32bit unsigned ints that encode NaN. */#define _FP_NANFRAC_S		_FP_QNANBIT_S#define _FP_NANFRAC_D		_FP_QNANBIT_D, 0#define _FP_NANFRAC_Q           _FP_QNANBIT_Q, 0, 0, 0#define _FP_KEEPNANFRACP 1/* This macro appears to be called when both X and Y are NaNs, and  * has to choose one and copy it to R. i386 goes for the larger of the * two, sparc64 just picks Y. I don't understand this at all so I'll * go with sparc64 because it's shorter :->   -- PMM  */#define _FP_CHOOSENAN(fs, wc, R, X, Y)			\  do {							\    R##_s = Y##_s;					\    _FP_FRAC_COPY_##wc(R,Y);				\    R##_c = FP_CLS_NAN;					\  } while (0)  extern void fp_unpack_d(long *, unsigned long *, unsigned long *,			long *, long *, void *);extern int  fp_pack_d(void *, long, unsigned long, unsigned long, long, long);extern int  fp_pack_ds(void *, long, unsigned long, unsigned long, long, long);#define __FP_UNPACK_RAW_1(fs, X, val)			\  do {							\    union _FP_UNION_##fs *_flo =			\    	(union _FP_UNION_##fs *)val;			\							\    X##_f = _flo->bits.frac;				\    X##_e = _flo->bits.exp;				\    X##_s = _flo->bits.sign;				\  } while (0)#define __FP_UNPACK_RAW_2(fs, X, val)			\  do {							\    union _FP_UNION_##fs *_flo =			\    	(union _FP_UNION_##fs *)val;			\							\    X##_f0 = _flo->bits.frac0;				\    X##_f1 = _flo->bits.frac1;				\    X##_e  = _flo->bits.exp;				\    X##_s  = _flo->bits.sign;				\  } while (0)#define __FP_UNPACK_S(X,val)		\  do {					\    __FP_UNPACK_RAW_1(S,X,val);		\    _FP_UNPACK_CANONICAL(S,1,X);	\  } while (0)#define __FP_UNPACK_D(X,val)		\	fp_unpack_d(&X##_s, &X##_f1, &X##_f0, &X##_e, &X##_c, val)#define __FP_PACK_RAW_1(fs, val, X)			\  do {							\    union _FP_UNION_##fs *_flo =			\    	(union _FP_UNION_##fs *)val;			\							\    _flo->bits.frac = X##_f;				\    _flo->bits.exp  = X##_e;				\    _flo->bits.sign = X##_s;				\  } while (0)  #define __FP_PACK_RAW_2(fs, val, X)			\  do {							\    union _FP_UNION_##fs *_flo =			\    	(union _FP_UNION_##fs *)val;			\							\    _flo->bits.frac0 = X##_f0;				\    _flo->bits.frac1 = X##_f1;				\    _flo->bits.exp   = X##_e;				\    _flo->bits.sign  = X##_s;				\  } while (0)#include <linux/kernel.h>#include <linux/sched.h>#define __FPU_FPSCR	(current->thread.fpscr)/* We only actually write to the destination register * if exceptions signalled (if any) will not trap. */#define __FPU_ENABLED_EXC \({						\	(__FPU_FPSCR >> 3) & 0x1f;	\})#define __FPU_TRAP_P(bits) \	((__FPU_ENABLED_EXC & (bits)) != 0)#define __FP_PACK_S(val,X)			\({  int __exc = _FP_PACK_CANONICAL(S,1,X);	\    if(!__exc || !__FPU_TRAP_P(__exc))		\        __FP_PACK_RAW_1(S,val,X);		\    __exc;					\})#define __FP_PACK_D(val,X)			\	fp_pack_d(val, X##_s, X##_f1, X##_f0, X##_e, X##_c)#define __FP_PACK_DS(val,X)			\	fp_pack_ds(val, X##_s, X##_f1, X##_f0, X##_e, X##_c)/* Obtain the current rounding mode. */#define FP_ROUNDMODE			\({					\	__FPU_FPSCR & 0x3;		\})/* the asm fragments go here: all these are taken from glibc-2.0.5's * stdlib/longlong.h */#include <linux/types.h>#include <asm/byteorder.h>/* add_ssaaaa is used in op-2.h and should be equivalent to * #define add_ssaaaa(sh,sl,ah,al,bh,bl) (sh = ah+bh+ (( sl = al+bl) < al)) * add_ssaaaa(high_sum, low_sum, high_addend_1, low_addend_1, * high_addend_2, low_addend_2) adds two UWtype integers, composed by * HIGH_ADDEND_1 and LOW_ADDEND_1, and HIGH_ADDEND_2 and LOW_ADDEND_2 * respectively.  The result is placed in HIGH_SUM and LOW_SUM.  Overflow * (i.e. carry out) is not stored anywhere, and is lost. */#define add_ssaaaa(sh, sl, ah, al, bh, bl)				\  do {									\    if (__builtin_constant_p (bh) && (bh) == 0)				\      __asm__ ("{a%I4|add%I4c} %1,%3,%4\n\t{aze|addze} %0,%2"		\	     : "=r" ((USItype)(sh)),					\	       "=&r" ((USItype)(sl))					\	     : "%r" ((USItype)(ah)),					\	       "%r" ((USItype)(al)),					\	       "rI" ((USItype)(bl)));					\    else if (__builtin_constant_p (bh) && (bh) ==~(USItype) 0)		\      __asm__ ("{a%I4|add%I4c} %1,%3,%4\n\t{ame|addme} %0,%2"		\	     : "=r" ((USItype)(sh)),					\	       "=&r" ((USItype)(sl))					\	     : "%r" ((USItype)(ah)),					\	       "%r" ((USItype)(al)),					\	       "rI" ((USItype)(bl)));					\    else								\      __asm__ ("{a%I5|add%I5c} %1,%4,%5\n\t{ae|adde} %0,%2,%3"		\	     : "=r" ((USItype)(sh)),					\	       "=&r" ((USItype)(sl))					\	     : "%r" ((USItype)(ah)),					\	       "r" ((USItype)(bh)),					\	       "%r" ((USItype)(al)),					\	       "rI" ((USItype)(bl)));					\  } while (0)/* sub_ddmmss is used in op-2.h and udivmodti4.c and should be equivalent to * #define sub_ddmmss(sh, sl, ah, al, bh, bl) (sh = ah-bh - ((sl = al-bl) > al)) * sub_ddmmss(high_difference, low_difference, high_minuend, low_minuend, * high_subtrahend, low_subtrahend) subtracts two two-word UWtype integers, * composed by HIGH_MINUEND_1 and LOW_MINUEND_1, and HIGH_SUBTRAHEND_2 and * LOW_SUBTRAHEND_2 respectively.  The result is placed in HIGH_DIFFERENCE * and LOW_DIFFERENCE.  Overflow (i.e. carry out) is not stored anywhere, * and is lost. */#define sub_ddmmss(sh, sl, ah, al, bh, bl)				\  do {									\    if (__builtin_constant_p (ah) && (ah) == 0)				\      __asm__ ("{sf%I3|subf%I3c} %1,%4,%3\n\t{sfze|subfze} %0,%2"	\	       : "=r" ((USItype)(sh)),					\		 "=&r" ((USItype)(sl))					\	       : "r" ((USItype)(bh)),					\		 "rI" ((USItype)(al)),					\		 "r" ((USItype)(bl)));					\    else if (__builtin_constant_p (ah) && (ah) ==~(USItype) 0)		\      __asm__ ("{sf%I3|subf%I3c} %1,%4,%3\n\t{sfme|subfme} %0,%2"	\	       : "=r" ((USItype)(sh)),					\		 "=&r" ((USItype)(sl))					\	       : "r" ((USItype)(bh)),					\		 "rI" ((USItype)(al)),					\		 "r" ((USItype)(bl)));					\    else if (__builtin_constant_p (bh) && (bh) == 0)			\      __asm__ ("{sf%I3|subf%I3c} %1,%4,%3\n\t{ame|addme} %0,%2"		\	       : "=r" ((USItype)(sh)),					\		 "=&r" ((USItype)(sl))					\	       : "r" ((USItype)(ah)),					\		 "rI" ((USItype)(al)),					\		 "r" ((USItype)(bl)));					\    else if (__builtin_constant_p (bh) && (bh) ==~(USItype) 0)		\      __asm__ ("{sf%I3|subf%I3c} %1,%4,%3\n\t{aze|addze} %0,%2"		\	       : "=r" ((USItype)(sh)),					\		 "=&r" ((USItype)(sl))					\	       : "r" ((USItype)(ah)),					\		 "rI" ((USItype)(al)),					\		 "r" ((USItype)(bl)));					\    else								\      __asm__ ("{sf%I4|subf%I4c} %1,%5,%4\n\t{sfe|subfe} %0,%3,%2"	\	       : "=r" ((USItype)(sh)),					\		 "=&r" ((USItype)(sl))					\	       : "r" ((USItype)(ah)),					\		 "r" ((USItype)(bh)),					\		 "rI" ((USItype)(al)),					\		 "r" ((USItype)(bl)));					\  } while (0)/* asm fragments for mul and div */	 /* umul_ppmm(high_prod, low_prod, multipler, multiplicand) multiplies two * UWtype integers MULTIPLER and MULTIPLICAND, and generates a two UWtype * word product in HIGH_PROD and LOW_PROD. */#define umul_ppmm(ph, pl, m0, m1)					\  do {									\    USItype __m0 = (m0), __m1 = (m1);					\    __asm__ ("mulhwu %0,%1,%2"						\	     : "=r" ((USItype)(ph))					\	     : "%r" (__m0),						\               "r" (__m1));						\    (pl) = __m0 * __m1;							\  } while (0)/* udiv_qrnnd(quotient, remainder, high_numerator, low_numerator, * denominator) divides a UDWtype, composed by the UWtype integers * HIGH_NUMERATOR and LOW_NUMERATOR, by DENOMINATOR and places the quotient * in QUOTIENT and the remainder in REMAINDER.  HIGH_NUMERATOR must be less * than DENOMINATOR for correct operation.  If, in addition, the most * significant bit of DENOMINATOR must be 1, then the pre-processor symbol * UDIV_NEEDS_NORMALIZATION is defined to 1. */#define udiv_qrnnd(q, r, n1, n0, d)					\  do {									\    UWtype __d1, __d0, __q1, __q0, __r1, __r0, __m;			\    __d1 = __ll_highpart (d);						\    __d0 = __ll_lowpart (d);						\									\    __r1 = (n1) % __d1;							\    __q1 = (n1) / __d1;							\    __m = (UWtype) __q1 * __d0;						\    __r1 = __r1 * __ll_B | __ll_highpart (n0);				\    if (__r1 < __m)							\      {									\	__q1--, __r1 += (d);						\	if (__r1 >= (d)) /* we didn't get carry when adding to __r1 */	\	  if (__r1 < __m)						\	    __q1--, __r1 += (d);					\      }									\    __r1 -= __m;							\									\    __r0 = __r1 % __d1;							\    __q0 = __r1 / __d1;							\    __m = (UWtype) __q0 * __d0;						\    __r0 = __r0 * __ll_B | __ll_lowpart (n0);				\    if (__r0 < __m)							\      {									\	__q0--, __r0 += (d);						\	if (__r0 >= (d))						\	  if (__r0 < __m)						\	    __q0--, __r0 += (d);					\      }									\    __r0 -= __m;							\									\    (q) = (UWtype) __q1 * __ll_B | __q0;				\    (r) = __r0;								\  } while (0)#define UDIV_NEEDS_NORMALIZATION 1#define abort()								\	return 0#ifdef __BIG_ENDIAN#define __BYTE_ORDER __BIG_ENDIAN#else#define __BYTE_ORDER __LITTLE_ENDIAN#endif/* Exception flags. */#define EFLAG_INVALID		(1 << (31 - 2))#define EFLAG_OVERFLOW		(1 << (31 - 3))#define EFLAG_UNDERFLOW		(1 << (31 - 4))#define EFLAG_DIVZERO		(1 << (31 - 5))#define EFLAG_INEXACT		(1 << (31 - 6))#define EFLAG_VXSNAN		(1 << (31 - 7))#define EFLAG_VXISI		(1 << (31 - 8))#define EFLAG_VXIDI		(1 << (31 - 9))#define EFLAG_VXZDZ		(1 << (31 - 10))#define EFLAG_VXIMZ		(1 << (31 - 11))#define EFLAG_VXVC		(1 << (31 - 12))#define EFLAG_VXSOFT		(1 << (31 - 21))#define EFLAG_VXSQRT		(1 << (31 - 22))#define EFLAG_VXCVI		(1 << (31 - 23))

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美激情艳妇裸体舞| 国产一区二区三区免费看| av电影在线不卡| 国产精品丝袜91| 91女神在线视频| 亚洲免费三区一区二区| 欧美伊人久久久久久午夜久久久久| 亚洲综合激情网| 777久久久精品| 韩国女主播一区| 亚洲日本欧美天堂| 欧美精品三级日韩久久| 国产一区亚洲一区| 自拍av一区二区三区| 在线不卡a资源高清| 国产精品自拍在线| 亚洲欧美韩国综合色| 欧美人牲a欧美精品| 国产一区欧美二区| 亚洲美女免费视频| 精品久久五月天| gogo大胆日本视频一区| 五月婷婷综合在线| 久久久久久一二三区| 91蜜桃视频在线| 美女视频黄a大片欧美| 国产欧美一区二区三区网站| 色综合久久久久综合99| 免费成人在线网站| 国产精品日韩成人| 8v天堂国产在线一区二区| 国产精品中文字幕欧美| 亚洲午夜精品网| 久久九九久精品国产免费直播| 91一区二区在线| 激情五月婷婷综合网| 丝袜诱惑制服诱惑色一区在线观看 | 国产91丝袜在线观看| 中文字幕制服丝袜一区二区三区 | 成人激情图片网| 亚洲国产精品一区二区久久恐怖片| 日韩一级成人av| 99久久精品99国产精品| 精品一区二区在线看| 一区二区三区四区蜜桃| 精品国产一区二区精华| 在线观看免费亚洲| 不卡的看片网站| 国产盗摄视频一区二区三区| 午夜免费久久看| 亚洲欧洲制服丝袜| 中文字幕 久热精品 视频在线| 日韩视频免费观看高清完整版在线观看| 丁香亚洲综合激情啪啪综合| 麻豆国产一区二区| 婷婷国产在线综合| 亚洲一区二区三区在线| 国产精品久久久久久久久图文区| 日韩午夜三级在线| 欧美人牲a欧美精品| 色先锋aa成人| 成人国产精品免费观看动漫| 精油按摩中文字幕久久| 日韩电影免费在线看| 亚洲一二三区在线观看| 亚洲精品视频在线观看网站| 久久品道一品道久久精品| 日韩免费高清视频| 欧美久久久一区| 7777精品久久久大香线蕉 | 午夜视频一区二区三区| 一区二区三区免费观看| 成人高清在线视频| 国产馆精品极品| 国产一区高清在线| 国产老妇另类xxxxx| 美女视频网站黄色亚洲| 久久精品国产99久久6| 久久99热99| 激情丁香综合五月| 国产伦精品一区二区三区在线观看 | 婷婷亚洲久悠悠色悠在线播放| 亚洲精品精品亚洲| 亚洲夂夂婷婷色拍ww47| 夜夜嗨av一区二区三区| 亚洲自拍偷拍麻豆| 丝袜亚洲另类欧美| 日韩福利电影在线观看| 久久99精品久久久久| 狠狠色2019综合网| 成人激情图片网| 色综合久久天天| 8v天堂国产在线一区二区| 日韩精品自拍偷拍| 国产清纯在线一区二区www| 欧美韩国日本一区| 亚洲一区二区三区四区中文字幕 | 国产精品午夜在线| 亚洲视频图片小说| 亚洲1区2区3区4区| 久久国产福利国产秒拍| 国产毛片精品国产一区二区三区| av在线不卡网| 欧美日韩国产一区二区三区地区| 日韩三级视频在线看| 精品福利二区三区| 亚洲欧洲成人精品av97| 亚洲一区二区三区影院| 激情综合网av| 91视频www| 欧美一二三四在线| 国产精品国产自产拍高清av王其| 亚洲无线码一区二区三区| 国产在线精品不卡| 色婷婷国产精品综合在线观看| 日韩免费在线观看| 亚洲人成亚洲人成在线观看图片| 亚洲福利一区二区三区| 国产乱妇无码大片在线观看| 欧美三级日本三级少妇99| 精品国产a毛片| 亚洲图片一区二区| 国产成人啪午夜精品网站男同| 在线视频一区二区免费| 欧美精品一区二区三区久久久| 中文字幕在线不卡国产视频| 美腿丝袜在线亚洲一区| 99久久免费国产| 精品福利一二区| 午夜精品视频在线观看| av电影一区二区| 精品日韩欧美在线| 亚洲不卡av一区二区三区| 成人免费毛片app| 91麻豆精品国产91久久久资源速度 | 麻豆成人免费电影| 91电影在线观看| 久久精品一区二区三区不卡| 亚洲第一二三四区| 99视频一区二区| 久久精品亚洲一区二区三区浴池| 亚洲高清视频中文字幕| 成人污视频在线观看| 日韩午夜激情免费电影| 亚洲精品国产精品乱码不99| 国产电影一区二区三区| 日韩欧美在线不卡| 亚洲国产成人av好男人在线观看| a级精品国产片在线观看| 国产色91在线| 狠狠久久亚洲欧美| 日韩一区二区免费在线电影| 亚洲大片一区二区三区| 91麻豆视频网站| 中文字幕一区二区5566日韩| 国产91精品一区二区| 久久亚洲一区二区三区四区| 日韩高清不卡一区二区| 欧美卡1卡2卡| 日韩高清在线不卡| 欧美日韩午夜精品| 亚洲成人精品影院| 欧美色综合久久| 亚洲一区二区av在线| 91黄色免费看| 亚洲精品乱码久久久久久久久| 91视频在线观看| 亚洲人成亚洲人成在线观看图片| 99久久精品免费观看| 亚洲丝袜另类动漫二区| 色呦呦国产精品| 亚洲综合免费观看高清完整版在线| 在线精品视频小说1| 亚洲精品久久久蜜桃| 欧美少妇bbb| 看电影不卡的网站| 精品国产乱码久久久久久夜甘婷婷 | 亚洲大片免费看| 欧美精品v国产精品v日韩精品 | 欧美三级韩国三级日本一级| 亚洲成人高清在线| 3d成人动漫网站| 麻豆精品在线播放| 久久综合九色欧美综合狠狠| 国产成人99久久亚洲综合精品| 中文av一区二区| 日本韩国精品一区二区在线观看| 午夜私人影院久久久久| 欧美va亚洲va在线观看蝴蝶网| 国产在线一区二区| 中文字幕一区二区三区乱码在线| 成人18视频日本| 午夜精品久久久久久不卡8050| 欧美一级一级性生活免费录像| 韩国成人精品a∨在线观看| 国产欧美一区二区三区鸳鸯浴| 一本到高清视频免费精品| 性做久久久久久久免费看| 精品国免费一区二区三区| 成人动漫精品一区二区|