?? task.h
字號:
void vAFunction( void )
{
// Create at least one task before starting the kernel.
xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, NULL );
// Start the real time kernel with preemption.
vTaskStartScheduler ();
// Will only get here when the vTaskCode () task has called
// vTaskEndScheduler (). When we get here we are back to single task
// execution.
}
</pre>
*
* \defgroup vTaskEndScheduler vTaskEndScheduler
* \ingroup SchedulerControl
*/
void vTaskEndScheduler( void );
/**
* task. h
* <pre>void vTaskSuspendAll( void );</pre>
*
* Suspends all real time kernel activity while keeping interrupts (including the
* kernel tick) enabled.
*
* After calling vTaskSuspendAll () the calling task will continue to execute
* without risk of being swapped out until a call to xTaskResumeAll () has been
* made.
*
* Example usage:
<pre>
void vTask1( void * pvParameters )
{
for( ;; )
{
// Task code goes here.
// ...
// At some point the task wants to perform a long operation during
// which it does not want to get swapped out. It cannot use
// taskENTER_CRITICAL ()/taskEXIT_CRITICAL () as the length of the
// operation may cause interrupts to be missed - including the
// ticks.
// Prevent the real time kernel swapping out the task.
vTaskSuspendAll ();
// Perform the operation here. There is no need to use critical
// sections as we have all the microcontroller processing time.
// During this time interrupts will still operate and the kernel
// tick count will be maintained.
// ...
// The operation is complete. Restart the kernel.
xTaskResumeAll ();
}
}
</pre>
* \defgroup vTaskSuspendAll vTaskSuspendAll
* \ingroup SchedulerControl
*/
void vTaskSuspendAll( void );
/**
* task. h
* <pre>portCHAR xTaskResumeAll( void );</pre>
*
* Resumes real time kernel activity following a call to vTaskSuspendAll ().
* After a call to vTaskSuspendAll () the kernel will take control of which
* task is executing at any time.
*
* @return If resuming the scheduler caused a context switch then pdTRUE is
* returned, otherwise pdFALSE is returned.
*
* Example usage:
<pre>
void vTask1( void * pvParameters )
{
for( ;; )
{
// Task code goes here.
// ...
// At some point the task wants to perform a long operation during
// which it does not want to get swapped out. It cannot use
// taskENTER_CRITICAL ()/taskEXIT_CRITICAL () as the length of the
// operation may cause interrupts to be missed - including the
// ticks.
// Prevent the real time kernel swapping out the task.
vTaskSuspendAll ();
// Perform the operation here. There is no need to use critical
// sections as we have all the microcontroller processing time.
// During this time interrupts will still operate and the real
// time kernel tick count will be maintained.
// ...
// The operation is complete. Restart the kernel. We want to force
// a context switch - but there is no point if resuming the scheduler
// caused a context switch already.
if( !xTaskResumeAll () )
{
taskYIELD ();
}
}
}
</pre>
* \defgroup xTaskResumeAll xTaskResumeAll
* \ingroup SchedulerControl
*/
signed portBASE_TYPE xTaskResumeAll( void );
/*-----------------------------------------------------------
* TASK UTILITIES
*----------------------------------------------------------*/
/**
* task. h
* <PRE>volatile portTickType xTaskGetTickCount( void );</PRE>
*
* @return The count of ticks since vTaskStartScheduler was called.
*
* \page xTaskGetTickCount xTaskGetTickCount
* \ingroup TaskUtils
*/
portTickType xTaskGetTickCount( void );
/**
* task. h
* <PRE>unsigned portSHORT uxTaskGetNumberOfTasks( void );</PRE>
*
* @return The number of tasks that the real time kernel is currently managing.
* This includes all ready, blocked and suspended tasks. A task that
* has been deleted but not yet freed by the idle task will also be
* included in the count.
*
* \page uxTaskGetNumberOfTasks uxTaskGetNumberOfTasks
* \ingroup TaskUtils
*/
unsigned portBASE_TYPE uxTaskGetNumberOfTasks( void );
/**
* task. h
* <PRE>void vTaskList( portCHAR *pcWriteBuffer );</PRE>
*
* configUSE_TRACE_FACILITY, INCLUDE_vTaskDelete and INCLUDE_vTaskSuspend
* must all be defined as 1 for this function to be available.
* See the configuration section for more information.
*
* NOTE: This function will disable interrupts for its duration. It is
* not intended for normal application runtime use but as a debug aid.
*
* Lists all the current tasks, along with their current state and stack
* usage high water mark.
*
* Tasks are reported as blocked ('B'), ready ('R'), deleted ('D') or
* suspended ('S').
*
* @param pcWriteBuffer A buffer into which the above mentioned details
* will be written, in ascii form. This buffer is assumed to be large
* enough to contain the generated report. Approximately 40 bytes per
* task should be sufficient.
*
* \page vTaskList vTaskList
* \ingroup TaskUtils
*/
void vTaskList( signed portCHAR *pcWriteBuffer );
/**
* task. h
* <PRE>void vTaskStartTrace( portCHAR * pcBuffer, unsigned portBASE_TYPE uxBufferSize );</PRE>
*
* Starts a real time kernel activity trace. The trace logs the identity of
* which task is running when.
*
* The trace file is stored in binary format. A separate DOS utility called
* convtrce.exe is used to convert this into a tab delimited text file which
* can be viewed and plotted in a spread sheet.
*
* @param pcBuffer The buffer into which the trace will be written.
*
* @param ulBufferSize The size of pcBuffer in bytes. The trace will continue
* until either the buffer in full, or ulTaskEndTrace () is called.
*
* \page vTaskStartTrace vTaskStartTrace
* \ingroup TaskUtils
*/
void vTaskStartTrace( signed portCHAR * pcBuffer, unsigned portLONG ulBufferSize );
/**
* task. h
* <PRE>unsigned portLONG ulTaskEndTrace( void );</PRE>
*
* Stops a kernel activity trace. See vTaskStartTrace ().
*
* @return The number of bytes that have been written into the trace buffer.
*
* \page usTaskEndTrace usTaskEndTrace
* \ingroup TaskUtils
*/
unsigned portLONG ulTaskEndTrace( void );
/*-----------------------------------------------------------
* SCHEDULER INTERNALS AVAILABLE FOR PORTING PURPOSES
*----------------------------------------------------------*/
/*
* THIS FUNCTION MUST NOT BE USED FROM APPLICATION CODE. IT IS ONLY
* INTENDED FOR USE WHEN IMPLEMENTING A PORT OF THE SCHEDULER AND IS
* AN INTERFACE WHICH IS FOR THE EXCLUSIVE USE OF THE SCHEDULER.
*
* Called from the real time kernel tick (either preemptive or cooperative),
* this increments the tick count and checks if any tasks that are blocked
* for a finite period required removing from a blocked list and placing on
* a ready list.
*/
inline void vTaskIncrementTick( void );
/*
* THIS FUNCTION MUST NOT BE USED FROM APPLICATION CODE. IT IS AN
* INTERFACE WHICH IS FOR THE EXCLUSIVE USE OF THE SCHEDULER.
*
* THIS FUNCTION MUST BE CALLED WITH INTERRUPTS DISABLED.
*
* Removes the calling task from the ready list and places it both
* on the list of tasks waiting for a particular event, and the
* list of delayed tasks. The task will be removed from both lists
* and replaced on the ready list should either the event occur (and
* there be no higher priority tasks waiting on the same event) or
* the delay period expires.
*
* @param pxEventList The list containing tasks that are blocked waiting
* for the event to occur.
*
* @param xTicksToWait The maximum amount of time that the task should wait
* for the event to occur. This is specified in kernel ticks,the constant
* portTICK_RATE_MS can be used to convert kernel ticks into a real time
* period.
*/
void vTaskPlaceOnEventList( xList *pxEventList, portTickType xTicksToWait );
/*
* THIS FUNCTION MUST NOT BE USED FROM APPLICATION CODE. IT IS AN
* INTERFACE WHICH IS FOR THE EXCLUSIVE USE OF THE SCHEDULER.
*
* THIS FUNCTION MUST BE CALLED WITH INTERRUPTS DISABLED.
*
* Removes a task from both the specified event list and the list of blocked
* tasks, and places it on a ready queue.
*
* xTaskRemoveFromEventList () will be called if either an event occurs to
* unblock a task, or the block timeout period expires.
*
* @return pdTRUE if the task being removed has a higher priority than the task
* making the call, otherwise pdFALSE.
*/
signed portBASE_TYPE xTaskRemoveFromEventList( const xList *pxEventList );
/*
* THIS FUNCTION MUST NOT BE USED FROM APPLICATION CODE. IT IS AN
* INTERFACE WHICH IS FOR THE EXCLUSIVE USE OF THE SCHEDULER.
*
* INCLUDE_vTaskCleanUpResources and INCLUDE_vTaskSuspend must be defined as 1
* for this function to be available.
* See the configuration section for more information.
*
* Empties the ready and delayed queues of task control blocks, freeing the
* memory allocated for the task control block and task stacks as it goes.
*/
void vTaskCleanUpResources( void );
/*
* THIS FUNCTION MUST NOT BE USED FROM APPLICATION CODE. IT IS ONLY
* INTENDED FOR USE WHEN IMPLEMENTING A PORT OF THE SCHEDULER AND IS
* AN INTERFACE WHICH IS FOR THE EXCLUSIVE USE OF THE SCHEDULER.
*
* Sets the pointer to the current TCB to the TCB of the highest priority task
* that is ready to run.
*/
inline void vTaskSwitchContext( void );
/*
* Return the handle of the calling task.
*/
xTaskHandle xTaskGetCurrentTaskHandle( void );
/*
* Capture the current time status for future reference.
*/
void vTaskSetTimeOutState( xTimeOutType *pxTimeOut );
/*
* Compare the time status now with that previously captured to see if the
* timeout has expired.
*/
portBASE_TYPE xTaskCheckForTimeOut( xTimeOutType *pxTimeOut, portTickType *pxTicksToWait );
/*
* Shortcut used by the queue implementation to prevent unnecessary call to
* taskYIELD();
*/
void vTaskMissedYield( void );
#endif /* TASK_H */
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -