亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來(lái)到蟲(chóng)蟲(chóng)下載站! | ?? 資源下載 ?? 資源專(zhuān)輯 ?? 關(guān)于我們
? 蟲(chóng)蟲(chóng)下載站

?? kalman filter turitor.m

?? 卡爾曼濾波器教程
?? M
字號(hào):
% Extended Kalman Filter Demo

%{

Version 1.0, September 2006

This tutorial was written by Jose Manuel Rodriguez, 
Universidad Politecnica de Catalu馻, Spain
Based on the Technical Document by
Juan Andrade-Cetto, "The Kalman Filter", March 2002
%}

%{
x is the real plant behavior, in this case a sinus wave
with the following formulation:

x(time)=sin(frec(@ time-1)*time-1) + ramdom error signal("sigmav")
frec(time)=frec(@ time-1)

x_ is the predicted state, this is where Kalman filter will come 
and where we will correct our estimations using an observation

z is the observation of the real plant, in this case corresponding only to 
the position at a given time. Note that this observation is subject to an
error, therefore the resulting equation is: z(time)=x(time)+ramdom error("sigmaw")

Our first prediction will come from the plant ideal behavior, then
using the observations and error covariance we will obtain a better estimate.

xc is the ideal plant behavior... this is used just for comparison

P is the state error covariances at a given time of all the involved variables,
note that we are forming x as a 2 by 1 matrix with the following:
x(1,n) -> position
x(2,n) -> frecuency

Our functions are as following for this example:
Let's say:
f1: x1(time)=sin(x2(time-1)*(time-1))+V     V->ramdom plant error
f2: x2(time)=x2(time-1)
h:  y=x1+w                                  w->ramdom sensor error

F is the Jacobian of the transfer function due to the involved variables,
in this case these are x1 and x2, therefore F will be a 2 by 2 matrix 
(always the matrix is square). The resulting F depends on time and must be
computed for every step that the system takes.

F is as follows:
F -> df1/dx1 = 0    df1/dx2 = cos(x2*time)*time
     df2/dx1 = 0    df2/dx1 = 1

%}

clear all; close all;


% Initial Conditions
x(:,1) = [0;0.05];      %Our real plant initial condition       
x_(:,1) = [0;0.04];     %Our estimate initial conidition (they might differ)
xc = x_;                %Set the ideal model as we think it should start
P = [0.01 0;            %set initial error covariance for position & frec, both at sigma 0.1, P=diag([sigma_pos_init^2 sigmav_frec_init^2])
     0     0.01];
sigmav = 0.1;           %the covariance coeficient for the position error, sigma
sigmaw = 0.5;           %the covariance coeficient for the frecuency error, sigma
Q = sigmav*sigmav;      %the error covariance constant to be used, in this case just a escalar unit
R = sigmaw*sigmaw;      %the error covariance constant to be used, in this case just a escalar unit

G = [1;0];              %G is the Jacobian of the plant tranfer functions due to the error.
H = [ 1 0];             %H is the Jacobian of the sensor transfer functions due to the variables involved
W = 1;                  %W is the Jacobian of the sensor transfer functions due to the error.

steps = 1000;   %Amount of steps to simulate

% bucle
for i =2:steps          %start @ time=2 
  % the real plant
  x(:,i) = [sin(x(2,i-1)*(i-1)) + randn*sigmav ; x(2,i-1) ];
  z(i) = x(1,i) + randn*sigmaw;

  % blind prediction (just for comparison)
  xc(:,i) = [sin(xc(2,i-1)*(i-1)); xc(2,i-1)];  
  % prediction
  x_(:,i) = [sin(x_(2,i-1)*(i-1)); x_(2,i-1)];
  z_(i) = x_(1,i);

  % compute F
  F = [0 i*cos(x_(2,i)*i);
       0 1];
  
  % Prediction of the plant covariance
  P = F*P*F' + G*Q*G';
  % Innovation Covariance
  S = H*P*H'+R;
  % Kalman's gain
  K = P*H'*inv(S);
  % State check up and update
  x_(:,i) = x_(:,i) + K * (z(i)-z_(i));
  
  % Covariance check up and update
  P = (eye(2)-K*H)*P;
  
  sigmaP(:,i)=sqrt(diag(P)); %sigmap is for storing the current error covariance for ploting pourposes
end

figure(1);clf; hold on;
plot(x(1,:),'-b');                  %plot the real plant behavior
plot(z,'.r');                       %plot the observations over this plant
plot(x_(1,:),'-g');                 %plot the Kalman filter prediction over the plant
plot(xc(1,:),'-m');                 %The original thought of the plant
plot(x_(1,:)+2*sigmaP(1,:),'-g');   %These two are the threshold in witch I'm certain that the plant state is at a given time
plot(x_(1,:)-2*sigmaP(1,:),'-g');


figure(2);clf;hold on;
plot(x(2,:),'-b');                  %Frecuency estimation
plot(x_(2,:),'-g');                 %Frecuency filtered by Kalman
  

?? 快捷鍵說(shuō)明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美日韩午夜在线| 91网上在线视频| 欧美精品一区二区在线播放| 免费日韩伦理电影| 精品国产一区二区三区不卡| 国产剧情一区二区| 中文字幕日韩一区| 色综合久久中文字幕| 亚洲一区二区三区四区不卡| 欧美日韩电影在线播放| 蜜臀av在线播放一区二区三区| 国产精品久久久久久一区二区三区 | 97se狠狠狠综合亚洲狠狠| 国产精品美女久久久久久久| 在线观看精品一区| 激情亚洲综合在线| 亚洲区小说区图片区qvod| 欧美日韩你懂的| 国产一区二区三区美女| 国产精品久久久久久久久动漫 | 在线观看视频一区二区| 日韩精品福利网| 久久精品亚洲一区二区三区浴池| 99久久精品国产一区| 日韩电影在线看| 免费在线成人网| 精品国产免费一区二区三区四区 | 91美女蜜桃在线| 日本欧美在线观看| 国产精品久久久久精k8| 91精品婷婷国产综合久久竹菊| 国产精品一区二区三区网站| 夜夜嗨av一区二区三区| 久久蜜桃av一区二区天堂 | 在线电影欧美成精品| 韩国精品免费视频| 亚洲成人在线网站| 中文字幕不卡在线| 欧美一区二区三区公司| 99精品一区二区| 91老师片黄在线观看| 日韩av午夜在线观看| 中文字幕一区免费在线观看| 欧美一区二区三区喷汁尤物| 91丨九色丨黑人外教| 国产精品一色哟哟哟| 一区二区在线观看视频| 国产色综合久久| 日韩一区二区在线观看视频| 在线免费一区三区| 成人午夜在线视频| 精品写真视频在线观看| 亚洲成av人片在线观看| 亚洲欧美国产77777| 日本一区二区在线不卡| 欧美成人三级在线| 欧美久久久一区| 欧美唯美清纯偷拍| 99久久久久久| 欧美一区二区三区男人的天堂| 99久久伊人精品| 国产做a爰片久久毛片| 日韩精品一级中文字幕精品视频免费观看| 国产精品高潮久久久久无| 久久久综合九色合综国产精品| 日韩免费在线观看| 日韩午夜在线播放| 欧美理论电影在线| 欧美日韩精品高清| 欧美制服丝袜第一页| 色猫猫国产区一区二在线视频| 91丝袜美腿高跟国产极品老师 | 国产美女精品人人做人人爽| 九九国产精品视频| 麻豆国产91在线播放| 99视频热这里只有精品免费| 粉嫩久久99精品久久久久久夜| 国产在线不卡一区| 久久精品国产一区二区| 久久疯狂做爰流白浆xx| 九九精品一区二区| 国产高清亚洲一区| 成人免费毛片片v| 99国产精品久久| 欧亚一区二区三区| 欧美精品丝袜久久久中文字幕| 欧美视频一区在线| 日韩限制级电影在线观看| 日韩欧美成人激情| 国产欧美va欧美不卡在线| 国产欧美一区二区精品性色| 国产人成亚洲第一网站在线播放| 国产女人水真多18毛片18精品视频| 国产欧美日韩综合精品一区二区| 国产精品美女一区二区在线观看| 亚洲成人动漫av| 日韩va亚洲va欧美va久久| 看片的网站亚洲| 懂色av一区二区三区蜜臀| 99视频精品全部免费在线| 欧美性色黄大片| 日韩女优av电影| 国产精品久久免费看| 亚洲午夜在线视频| 精东粉嫩av免费一区二区三区| 成年人国产精品| 欧美日本一区二区| 久久久久9999亚洲精品| 亚洲精品日产精品乱码不卡| 免费久久99精品国产| 丰满白嫩尤物一区二区| 欧美无乱码久久久免费午夜一区| 精品国产一区二区三区久久久蜜月 | 精品免费国产一区二区三区四区| 久久精品人人爽人人爽| 一区二区三区免费| 久久99精品久久久| 色老汉一区二区三区| 精品福利在线导航| 亚洲猫色日本管| 久久99精品久久久| 欧美三级在线看| 国产精品午夜久久| 日韩不卡在线观看日韩不卡视频| 成人精品一区二区三区四区| 欧美色视频一区| 日本一二三四高清不卡| 午夜激情久久久| 成人h版在线观看| 日韩欧美中文一区二区| 亚洲色图欧美激情| 狠狠色丁香久久婷婷综合_中| 久久亚区不卡日本| 亚洲成人免费在线| 成人av电影在线播放| 精品乱码亚洲一区二区不卡| 亚洲黄色录像片| 成人一区二区三区中文字幕| 51精品视频一区二区三区| 中文字幕中文字幕一区| 国产伦精品一区二区三区视频青涩| 欧美日韩精品一区二区三区| 国产精品美女久久久久久久网站| 久久99国产精品久久99果冻传媒| 欧美影片第一页| 亚洲少妇中出一区| zzijzzij亚洲日本少妇熟睡| 精品国产一区a| 久久精品国产99| 91精品免费观看| 日韩av中文在线观看| 欧美老女人在线| 亚洲电影第三页| 欧美一a一片一级一片| 亚洲男人的天堂av| 欧美日韩国产精品自在自线| 一区二区视频在线| 97超碰欧美中文字幕| 国产精品成人免费| 99天天综合性| 亚洲另类中文字| 色网综合在线观看| 亚洲人亚洲人成电影网站色| www.欧美色图| 中文字幕一区在线观看视频| 成人午夜激情片| 国产精品美女一区二区三区 | 国产高清不卡一区| 久久久国产精品午夜一区ai换脸| 国产精品综合在线视频| 国产亚洲成aⅴ人片在线观看| 国产精品77777竹菊影视小说| 久久精品一二三| 成人动漫中文字幕| 亚洲精品视频免费看| 日韩午夜激情电影| 麻豆精品国产传媒mv男同| 欧美成人aa大片| 精品一区二区在线看| 国产午夜亚洲精品不卡| 国产91精品一区二区麻豆亚洲| 中文字幕欧美三区| 91免费看`日韩一区二区| 一区二区三区免费| 7777精品久久久大香线蕉| 久久精品国产精品青草| 久久久不卡影院| 91蜜桃婷婷狠狠久久综合9色| 亚洲综合男人的天堂| 欧美视频你懂的| 看电影不卡的网站| 久久成人综合网| 久久久久久久一区| 色综合一个色综合| 天天综合网天天综合色| 欧美大尺度电影在线| 国产91精品免费| 亚洲成人av在线电影| 欧美成人一级视频| 欧美一区二区播放|