?? matrixsymmetryregularinversion.cpp
字號:
//MatrixSymmetryRegularInversion.cpp 用“變量循環(huán)重新編號法”法求對稱正定矩陣逆
#include <iostream> //輸入輸出流
#include "Matrix.h" //矩陣類及相關函數(shù)等的定義
using namespace std; //名字空間
void main() // 定義控制臺應用程序的入口點
{
const double dmb[4][4] =
{
{0.2368,0.2471,0.2568,1.2671},
{1.1161,0.1254,0.1397,0.1490},
{0.1582,1.1675,0.1768,0.1871},
{0.1968,0.2071,1.2168,0.2271}
};
const double dma[4][4] =
{
{ 5.0, 7.0, 6.0, 5.0},
{ 7.0, 10.0, 8.0, 7.0},
{ 6.0, 8.0, 10.0, 9.0},
{ 5.0, 7.0, 9.0, 10.0}
};
const double dmc[4][4] =
{
{ 3.0, -3.0, -2.0, 4.0 },
{ 5.0, -5.0, 1.0, 8.0 },
{ 11.0, 8.0, 5.0, -7.0 },
{ 5.0, -1.0, -3.0, -1.0 }
};
matrix<double> matA(&dma[0][0], 4, 4);
matrix<double> matB(matA);
cout << "matA: " << endl;
MatrixLinePrint(matA); //按行輸出矩陣matA
int iValue = MatrixSymmetryRegularInversion(matA);
if(iValue > 1)
{
cout << endl << "Inversion(matA) : " << endl;
MatrixLinePrint(matA); //按行輸出矩陣matA的逆
cout << endl << "Inversion(matA) * matA : " << endl;
matA = matA * matB;
MatrixLinePrint(matA); //按行輸出矩陣matA與逆的乘積
}
else
cout << "matA 不是對稱正定陣!" << endl;
}
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -