?? svm.cpp
字號:
// if alpha_i == C, d != +1
// if alpha_i == 0, d != -1
double Gmax1 = -INF; // max { -grad(f)_i * d | y_i*d = +1 }
int Gmax1_idx = -1;
double Gmax2 = -INF; // max { -grad(f)_i * d | y_i*d = -1 }
int Gmax2_idx = -1;
for(int i=0;i<active_size;i++)
{
if(y[i]==+1) // y = +1
{
if(!is_upper_bound(i)) // d = +1
{
if(-G[i] > Gmax1)
{
Gmax1 = -G[i];
Gmax1_idx = i;
}
}
if(!is_lower_bound(i)) // d = -1
{
if(G[i] > Gmax2)
{
Gmax2 = G[i];
Gmax2_idx = i;
}
}
}
else // y = -1
{
if(!is_upper_bound(i)) // d = +1
{
if(-G[i] > Gmax2)
{
Gmax2 = -G[i];
Gmax2_idx = i;
}
}
if(!is_lower_bound(i)) // d = -1
{
if(G[i] > Gmax1)
{
Gmax1 = G[i];
Gmax1_idx = i;
}
}
}
}
if(Gmax1+Gmax2 < eps)
return 1;
out_i = Gmax1_idx;
out_j = Gmax2_idx;
return 0;
}
void Solver::do_shrinking()
{
int i,j,k;
if(select_working_set(i,j)!=0) return;
double Gm1 = -y[j]*G[j];
double Gm2 = y[i]*G[i];
// shrink
for(k=0;k<active_size;k++)
{
if(is_lower_bound(k))
{
if(y[k]==+1)
{
if(-G[k] >= Gm1) continue;
}
else if(-G[k] >= Gm2) continue;
}
else if(is_upper_bound(k))
{
if(y[k]==+1)
{
if(G[k] >= Gm2) continue;
}
else if(G[k] >= Gm1) continue;
}
else continue;
--active_size;
swap_index(k,active_size);
--k; // look at the newcomer
}
// unshrink, check all variables again before final iterations
if(unshrinked || -(Gm1 + Gm2) > eps*10) return;
unshrinked = true;
reconstruct_gradient();
for(k=l-1;k>=active_size;k--)
{
if(is_lower_bound(k))
{
if(y[k]==+1)
{
if(-G[k] < Gm1) continue;
}
else if(-G[k] < Gm2) continue;
}
else if(is_upper_bound(k))
{
if(y[k]==+1)
{
if(G[k] < Gm2) continue;
}
else if(G[k] < Gm1) continue;
}
else continue;
swap_index(k,active_size);
active_size++;
++k; // look at the newcomer
}
}
double Solver::calculate_rho()
{
double r;
int nr_free = 0;
double ub = INF, lb = -INF, sum_free = 0;
for(int i=0;i<active_size;i++)
{
double yG = y[i]*G[i];
if(is_lower_bound(i))
{
if(y[i] > 0)
ub = min(ub,yG);
else
lb = max(lb,yG);
}
else if(is_upper_bound(i))
{
if(y[i] < 0)
ub = min(ub,yG);
else
lb = max(lb,yG);
}
else
{
++nr_free;
sum_free += yG;
}
}
if(nr_free>0)
r = sum_free/nr_free;
else
r = (ub+lb)/2;
return r;
}
//
// Solver for nu-svm classification and regression
//
// additional constraint: e^T \alpha = constant
//
class Solver_NU : public Solver
{
public:
Solver_NU() {}
void Solve(int l, const Kernel& Q, const double *b, const schar *y,
double *alpha, double Cp, double Cn, double eps,
SolutionInfo* si, int shrinking)
{
this->si = si;
Solver::Solve(l,Q,b,y,alpha,Cp,Cn,eps,si,shrinking);
}
private:
SolutionInfo *si;
int select_working_set(int &i, int &j);
double calculate_rho();
void do_shrinking();
};
int Solver_NU::select_working_set(int &out_i, int &out_j)
{
// return i,j which maximize -grad(f)^T d , under constraint
// if alpha_i == C, d != +1
// if alpha_i == 0, d != -1
double Gmax1 = -INF; // max { -grad(f)_i * d | y_i = +1, d = +1 }
int Gmax1_idx = -1;
double Gmax2 = -INF; // max { -grad(f)_i * d | y_i = +1, d = -1 }
int Gmax2_idx = -1;
double Gmax3 = -INF; // max { -grad(f)_i * d | y_i = -1, d = +1 }
int Gmax3_idx = -1;
double Gmax4 = -INF; // max { -grad(f)_i * d | y_i = -1, d = -1 }
int Gmax4_idx = -1;
for(int i=0;i<active_size;i++)
{
if(y[i]==+1) // y == +1
{
if(!is_upper_bound(i)) // d = +1
{
if(-G[i] > Gmax1)
{
Gmax1 = -G[i];
Gmax1_idx = i;
}
}
if(!is_lower_bound(i)) // d = -1
{
if(G[i] > Gmax2)
{
Gmax2 = G[i];
Gmax2_idx = i;
}
}
}
else // y == -1
{
if(!is_upper_bound(i)) // d = +1
{
if(-G[i] > Gmax3)
{
Gmax3 = -G[i];
Gmax3_idx = i;
}
}
if(!is_lower_bound(i)) // d = -1
{
if(G[i] > Gmax4)
{
Gmax4 = G[i];
Gmax4_idx = i;
}
}
}
}
if(max(Gmax1+Gmax2,Gmax3+Gmax4) < eps)
return 1;
if(Gmax1+Gmax2 > Gmax3+Gmax4)
{
out_i = Gmax1_idx;
out_j = Gmax2_idx;
}
else
{
out_i = Gmax3_idx;
out_j = Gmax4_idx;
}
return 0;
}
void Solver_NU::do_shrinking()
{
double Gmax1 = -INF; // max { -grad(f)_i * d | y_i = +1, d = +1 }
double Gmax2 = -INF; // max { -grad(f)_i * d | y_i = +1, d = -1 }
double Gmax3 = -INF; // max { -grad(f)_i * d | y_i = -1, d = +1 }
double Gmax4 = -INF; // max { -grad(f)_i * d | y_i = -1, d = -1 }
int k;
for(k=0;k<active_size;k++)
{
if(!is_upper_bound(k))
{
if(y[k]==+1)
{
if(-G[k] > Gmax1) Gmax1 = -G[k];
}
else if(-G[k] > Gmax3) Gmax3 = -G[k];
}
if(!is_lower_bound(k))
{
if(y[k]==+1)
{
if(G[k] > Gmax2) Gmax2 = G[k];
}
else if(G[k] > Gmax4) Gmax4 = G[k];
}
}
double Gm1 = -Gmax2;
double Gm2 = -Gmax1;
double Gm3 = -Gmax4;
double Gm4 = -Gmax3;
for(k=0;k<active_size;k++)
{
if(is_lower_bound(k))
{
if(y[k]==+1)
{
if(-G[k] >= Gm1) continue;
}
else if(-G[k] >= Gm3) continue;
}
else if(is_upper_bound(k))
{
if(y[k]==+1)
{
if(G[k] >= Gm2) continue;
}
else if(G[k] >= Gm4) continue;
}
else continue;
--active_size;
swap_index(k,active_size);
--k; // look at the newcomer
}
// unshrink, check all variables again before final iterations
if(unshrinked || max(-(Gm1+Gm2),-(Gm3+Gm4)) > eps*10) return;
unshrinked = true;
reconstruct_gradient();
for(k=l-1;k>=active_size;k--)
{
if(is_lower_bound(k))
{
if(y[k]==+1)
{
if(-G[k] < Gm1) continue;
}
else if(-G[k] < Gm3) continue;
}
else if(is_upper_bound(k))
{
if(y[k]==+1)
{
if(G[k] < Gm2) continue;
}
else if(G[k] < Gm4) continue;
}
else continue;
swap_index(k,active_size);
active_size++;
++k; // look at the newcomer
}
}
double Solver_NU::calculate_rho()
{
int nr_free1 = 0,nr_free2 = 0;
double ub1 = INF, ub2 = INF;
double lb1 = -INF, lb2 = -INF;
double sum_free1 = 0, sum_free2 = 0;
for(int i=0;i<active_size;i++)
{
if(y[i]==+1)
{
if(is_lower_bound(i))
ub1 = min(ub1,G[i]);
else if(is_upper_bound(i))
lb1 = max(lb1,G[i]);
else
{
++nr_free1;
sum_free1 += G[i];
}
}
else
{
if(is_lower_bound(i))
ub2 = min(ub2,G[i]);
else if(is_upper_bound(i))
lb2 = max(lb2,G[i]);
else
{
++nr_free2;
sum_free2 += G[i];
}
}
}
double r1,r2;
if(nr_free1 > 0)
r1 = sum_free1/nr_free1;
else
r1 = (ub1+lb1)/2;
if(nr_free2 > 0)
r2 = sum_free2/nr_free2;
else
r2 = (ub2+lb2)/2;
si->r = (r1+r2)/2;
return (r1-r2)/2;
}
//
// Q matrices for various formulations
//
class SVC_Q: public Kernel
{
public:
SVC_Q(const svm_problem& prob, const svm_parameter& param, const schar *y_)
:Kernel(prob.l, prob.x, param)
{
clone(y,y_,prob.l);
cache = new Cache(prob.l,(int)(param.cache_size*(1<<20)));
}
Qfloat *get_Q(int i, int len) const
{
Qfloat *data;
int start;
if((start = cache->get_data(i,&data,len)) < len)
{
for(int j=start;j<len;j++)
data[j] = (Qfloat)(y[i]*y[j]*(this->*kernel_function)(i,j));
}
return data;
}
void swap_index(int i, int j) const
{
cache->swap_index(i,j);
Kernel::swap_index(i,j);
swap(y[i],y[j]);
}
~SVC_Q()
{
delete[] y;
delete cache;
}
private:
schar *y;
Cache *cache;
};
class ONE_CLASS_Q: public Kernel
{
public:
ONE_CLASS_Q(const svm_problem& prob, const svm_parameter& param)
:Kernel(prob.l, prob.x, param)
{
cache = new Cache(prob.l,(int)(param.cache_size*(1<<20)));
}
Qfloat *get_Q(int i, int len) const
{
Qfloat *data;
int start;
if((start = cache->get_data(i,&data,len)) < len)
{
for(int j=start;j<len;j++)
data[j] = (Qfloat)(this->*kernel_function)(i,j);
}
return data;
}
void swap_index(int i, int j) const
{
cache->swap_index(i,j);
Kernel::swap_index(i,j);
}
~ONE_CLASS_Q()
{
delete cache;
}
private:
Cache *cache;
};
class SVR_Q: public Kernel
{
public:
SVR_Q(const svm_problem& prob, const svm_parameter& param)
:Kernel(prob.l, prob.x, param)
{
l = prob.l;
cache = new Cache(l,(int)(param.cache_size*(1<<20)));
sign = new schar[2*l];
index = new int[2*l];
for(int k=0;k<l;k++)
{
sign[k] = 1;
sign[k+l] = -1;
index[k] = k;
index[k+l] = k;
}
buffer[0] = new Qfloat[2*l];
buffer[1] = new Qfloat[2*l];
next_buffer = 0;
}
void swap_index(int i, int j) const
{
swap(sign[i],sign[j]);
swap(index[i],index[j]);
}
Qfloat *get_Q(int i, int len) const
{
Qfloat *data;
int real_i = index[i];
if(cache->get_data(real_i,&data,l) < l)
{
for(int j=0;j<l;j++)
data[j] = (Qfloat)(this->*kernel_function)(real_i,j);
}
// reorder and copy
Qfloat *buf = buffer[next_buffer];
next_buffer = 1 - next_buffer;
schar si = sign[i];
for(int j=0;j<len;j++)
buf[j] = si * sign[j] * data[index[j]];
return buf;
}
~SVR_Q()
{
delete cache;
delete[] sign;
delete[] index;
delete[] buffer[0];
delete[] buffer[1];
}
private:
int l;
Cache *cache;
schar *sign;
int *index;
mutable int next_buffer;
Qfloat* buffer[2];
};
//
// construct and solve various formulations
//
static void solve_c_svc(
const svm_problem *prob, const svm_parameter* param,
double *alpha, Solver::SolutionInfo* si, double Cp, double Cn)
{
int l = prob->l;
double *minus_ones = new double[l];
schar *y = new schar[l];
int i;
for(i=0;i<l;i++)
{
alpha[i] = 0;
minus_ones[i] = -1;
if(prob->y[i] > 0) y[i] = +1; else y[i]=-1;
}
Solver s;
s.Solve(l, SVC_Q(*prob,*param,y), minus_ones, y,
alpha, Cp, Cn, param->eps, si, param->shrinking);
double sum_alpha=0;
for(i=0;i<l;i++)
sum_alpha += alpha[i];
info("nu = %f\n", sum_alpha/(param->C*prob->l));
for(i=0;i<l;i++)
alpha[i] *= y[i];
delete[] minus_ones;
delete[] y;
}
static void solve_nu_svc(
const svm_problem *prob, const svm_parameter *param,
double *alpha, Solver::SolutionInfo* si)
{
int i;
int l = prob->l;
double nu = param->nu;
int y_pos = 0;
int y_neg = 0;
schar *y = new schar[l];
for(i=0;i<l;i++)
if(prob->y[i]>0)
{
y[i] = +1;
++y_pos;
}
else
{
y[i] = -1;
++y_neg;
}
if(nu < 0 || nu*l/2 > min(y_pos,y_neg))
{
fprintf(stderr,"specified nu is infeasible\n");
exit(1);
}
double sum_pos = nu*l/2;
double sum_neg = nu*l/2;
for(i=0;i<l;i++)
if(y[i] == +1)
{
alpha[i] = min(1.0,sum_pos);
sum_pos -= alpha[i];
}
else
{
alpha[i] = min(1.0,sum_neg);
sum_neg -= alpha[i];
}
double *zeros = new double[l];
for(i=0;i<l;i++)
zeros[i] = 0;
Solver_NU s;
s.Solve(l, SVC_Q(*prob,*param,y), zeros, y,
alpha, 1.0, 1.0, param->eps, si, param->shrinking);
double r = si->r;
info("C = %f\n",1/r);
for(i=0;i<l;i++)
alpha[i] *= y[i]/r;
si->rho /= r;
si->obj /= (r*r);
si->upper_bound_p = 1/r;
si->upper_bound_n = 1/r;
delete[] y;
delete[] zeros;
}
static void solve_one_class(
const svm_problem *prob, const svm_parameter *param,
double *alpha, Solver::SolutionInfo* si)
{
int l = prob->l;
double *zeros = new double[l];
schar *ones = new schar[l];
int i;
int n = (int)(param->nu*prob->l); // # of alpha's at upper bound
if(n>=prob->l)
{
fprintf(stderr,"nu must be in (0,1)\n");
exit(1);
}
for(i=0;i<n;i++)
alpha[i] = 1;
alpha[n] = param->nu * prob->l - n;
for(i=n+1;i<l;i++)
alpha[i] = 0;
for(i=0;i<l;i++)
{
zeros[i] = 0;
ones[i] = 1;
}
Solver s;
s.Solve(l, ONE_CLASS_Q(*prob,*param), zeros, ones,
alpha, 1.0, 1.0, param->eps, si, param->shrinking);
delete[] zeros;
delete[] ones;
}
static void solve_epsilon_svr(
const svm_problem *prob, const svm_parameter *param,
double *alpha, Solver::SolutionInfo* si)
{
int l = prob->l;
double *alpha2 = new double[2*l];
double *linear_term = new double[2*l];
schar *y = new schar[2*l];
int i;
for(i=0;i<l;i++)
{
alpha2[i] = 0;
linear_term[i] = param->p - prob->y[i];
y[i] = 1;
alpha2[i+l] = 0;
linear_term[i+l] = param->p + prob->y[i];
y[i+l] = -1;
}
Solver s;
s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y,
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -