亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? model.cs

?? SVM的一個源程序
?? CS
字號:
//Copyright (C) 2007 Matthew Johnson

//This program is free software; you can redistribute it and/or modify
//it under the terms of the GNU General Public License as published by
//the Free Software Foundation; either version 2 of the License, or
//(at your option) any later version.

//This program is distributed in the hope that it will be useful,
//but WITHOUT ANY WARRANTY; without even the implied warranty of
//MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//GNU General Public License for more details.

//You should have received a copy of the GNU General Public License along
//with this program; if not, write to the Free Software Foundation, Inc.,
//51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

using System;
using System.IO;
namespace SVM
{
    /// <summary>
    /// Encapsulates an SVM Model.
    /// </summary>
	[Serializable]
	public class Model
	{
        private Parameter _parameter;
        private int _numberOfClasses;
        private int _supportVectorCount;
        private Node[][] _supportVectors;
        private double[][] _supportVectorCoefficients;
        private double[] _rho;
        private double[] _pairwiseProbabilityA;
        private double[] _pairwiseProbabilityB;

        private int[] _classLabels;
        private int[] _numberOfSVPerClass;

        internal Model()
        {
        }

        /// <summary>
        /// Parameter object.
        /// </summary>
        public Parameter Parameter
        {
            get
            {
                return _parameter;
            }
            set
            {
                _parameter = value;
            }
        }

        /// <summary>
        /// Number of classes in the model.
        /// </summary>
        public int NumberOfClasses
        {
            get
            {
                return _numberOfClasses;
            }
            set
            {
                _numberOfClasses = value;
            }
        }

        /// <summary>
        /// Total number of support vectors.
        /// </summary>
        public int SupportVectorCount
        {
            get
            {
                return _supportVectorCount;
            }
            set
            {
                _supportVectorCount = value;
            }
        }

        /// <summary>
        /// The support vectors.
        /// </summary>
        public Node[][] SupportVectors
        {
            get
            {
                return _supportVectors;
            }
            set
            {
                _supportVectors = value;
            }
        }

        /// <summary>
        /// The coefficients for the support vectors.
        /// </summary>
        public double[][] SupportVectorCoefficients
        {
            get
            {
                return _supportVectorCoefficients;
            }
            set
            {
                _supportVectorCoefficients = value;
            }
        }

        /// <summary>
        /// Rho values.
        /// </summary>
        public double[] Rho
        {
            get
            {
                return _rho;
            }
            set
            {
                _rho = value;
            }
        }

        /// <summary>
        /// First pairwise probability.
        /// </summary>
        public double[] PairwiseProbabilityA
        {
            get
            {
                return _pairwiseProbabilityA;
            }
            set
            {
                _pairwiseProbabilityA = value;
            }
        }

        /// <summary>
        /// Second pairwise probability.
        /// </summary>
        public double[] PairwiseProbabilityB
        {
            get
            {
                return _pairwiseProbabilityB;
            }
            set
            {
                _pairwiseProbabilityB = value;
            }
        }
		
		// for classification only

        /// <summary>
        /// Class labels.
        /// </summary>
        public int[] ClassLabels
        {
            get
            {
                return _classLabels;
            }
            set
            {
                _classLabels = value;
            }
        }

        /// <summary>
        /// Number of support vectors per class.
        /// </summary>
        public int[] NumberOfSVPerClass
        {
            get
            {
                return _numberOfSVPerClass;
            }
            set
            {
                _numberOfSVPerClass = value;
            }
        }

        /// <summary>
        /// Reads a Model from the provided file.
        /// </summary>
        /// <param name="filename">The name of the file containing the Model</param>
        /// <returns>the Model</returns>
        public static Model Read(string filename)
        {
            FileStream input = File.OpenRead(filename);
            try
            {
                return Read(input);
            }
            finally
            {
                input.Close();
            }
        }

        /// <summary>
        /// Reads a Model from the provided stream.
        /// </summary>
        /// <param name="stream">The stream from which to read the Model.</param>
        /// <returns>the Model</returns>
        public static Model Read(Stream stream)
        {
            StreamReader input = new StreamReader(stream);

            // read parameters

            Model model = new Model();
            Parameter param = new Parameter();
            model.Parameter = param;
            model.Rho = null;
            model.PairwiseProbabilityA = null;
            model.PairwiseProbabilityB = null;
            model.ClassLabels = null;
            model.NumberOfSVPerClass = null;

            bool headerFinished = false;
            while (!headerFinished)
            {
                string line = input.ReadLine();
                string cmd, arg;
                int splitIndex = line.IndexOf(' ');
                if (splitIndex >= 0)
                {
                    cmd = line.Substring(0, splitIndex);
                    arg = line.Substring(splitIndex + 1);
                }
                else
                {
                    cmd = line;
                    arg = "";
                }
                arg = arg.ToLower();

                int i,n;
                switch(cmd){
                    case "svm_type":
                        param.SvmType = (SvmType)Enum.Parse(typeof(SvmType), arg.ToUpper());
                        break;
                        
                    case "kernel_type":
                        param.KernelType = (KernelType)Enum.Parse(typeof(KernelType), arg.ToUpper());
                        break;

                    case "degree":
                        param.Degree = int.Parse(arg);
                        break;

                    case "gamma":
                        param.Gamma = double.Parse(arg);
                        break;

                    case "coef0":
                        param.Coefficient0 = double.Parse(arg);
                        break;

                    case "nr_class":
                        model.NumberOfClasses = int.Parse(arg);
                        break;

                    case "total_sv":
                        model.SupportVectorCount = int.Parse(arg);
                        break;

                    case "rho":
                        n = model.NumberOfClasses * (model.NumberOfClasses - 1) / 2;
                        model.Rho = new double[n];
                        string[] rhoParts = arg.Split();
                        for(i=0; i<n; i++)
                            model.Rho[i] = double.Parse(rhoParts[i]);
                        break;

                    case "label":
                        n = model.NumberOfClasses;
                        model.ClassLabels = new int[n];
                        string[] labelParts = arg.Split();
                        for (i = 0; i < n; i++)
                            model.ClassLabels[i] = int.Parse(labelParts[i]);
                        break;

                    case "probA":
                        n = model.NumberOfClasses * (model.NumberOfClasses - 1) / 2;
                        model.PairwiseProbabilityA = new double[n];
                            string[] probAParts = arg.Split();
                        for (i = 0; i < n; i++)
                            model.PairwiseProbabilityA[i] = double.Parse(probAParts[i]);
                        break;

                    case "probB":
                        n = model.NumberOfClasses * (model.NumberOfClasses - 1) / 2;
                        model.PairwiseProbabilityB = new double[n];
                        string[] probBParts = arg.Split();
                        for (i = 0; i < n; i++)
                            model.PairwiseProbabilityB[i] = double.Parse(probBParts[i]);
                        break;

                    case "nr_sv":
                        n = model.NumberOfClasses;
                        model.NumberOfSVPerClass = new int[n];
                        string[] nrsvParts = arg.Split();
                        for (i = 0; i < n; i++)
                            model.NumberOfSVPerClass[i] = int.Parse(nrsvParts[i]);
                        break;

                    case "SV":
                        headerFinished = true;
                        break;

                    default:
                        throw new Exception("Unknown text in model file");  
                }
            }

            // read sv_coef and SV

            int m = model.NumberOfClasses - 1;
            int l = model.SupportVectorCount;
            model.SupportVectorCoefficients = new double[m][];
            for (int i = 0; i < m; i++)
            {
                model.SupportVectorCoefficients[i] = new double[l];
            }
            model.SupportVectors = new Node[l][];

            for (int i = 0; i < l; i++)
            {
                string[] parts = input.ReadLine().Trim().Split();

                for (int k = 0; k < m; k++)
                    model.SupportVectorCoefficients[k][i] = double.Parse(parts[k]);
                int n = parts.Length-m;
                model.SupportVectors[i] = new Node[n];
                for (int j = 0; j < n; j++)
                {
                    string[] nodeParts = parts[m + j].Split(':');
                    model.SupportVectors[i][j] = new Node();
                    model.SupportVectors[i][j].Index = int.Parse(nodeParts[0]);
                    model.SupportVectors[i][j].Value = double.Parse(nodeParts[1]);
                }
            }

            return model;
        }

        /// <summary>
        /// Writes a model to the provided filename.  This will overwrite any previous data in the file.
        /// </summary>
        /// <param name="filename">The desired file</param>
        /// <param name="model">The Model to write</param>
        public static void Write(string filename, Model model)
        {
            FileStream stream = File.Open(filename, FileMode.Create);
            try
            {
                Write(stream, model);
            }
            finally
            {
                stream.Close();
            }
        }

        /// <summary>
        /// Writes a model to the provided stream.
        /// </summary>
        /// <param name="stream">The output stream</param>
        /// <param name="model">The model to write</param>
        public static void Write(Stream stream, Model model)
        {
            StreamWriter output = new StreamWriter(stream);

            Parameter param = model.Parameter;

            output.Write("svm_type " + param.SvmType + "\n");
            output.Write("kernel_type " + param.KernelType + "\n");

            if (param.KernelType == KernelType.POLY)
                output.Write("degree " + param.Degree + "\n");

            if (param.KernelType == KernelType.POLY || param.KernelType == KernelType.RBF || param.KernelType == KernelType.SIGMOID)
                output.Write("gamma " + param.Gamma + "\n");

            if (param.KernelType == KernelType.POLY || param.KernelType == KernelType.SIGMOID)
                output.Write("coef0 " + param.Coefficient0 + "\n");

            int nr_class = model.NumberOfClasses;
            int l = model.SupportVectorCount;
            output.Write("nr_class " + nr_class + "\n");
            output.Write("total_sv " + l + "\n");

            {
                output.Write("rho");
                for (int i = 0; i < nr_class * (nr_class - 1) / 2; i++)
                    output.Write(" " + model.Rho[i]);
                output.Write("\n");
            }

            if (model.ClassLabels != null)
            {
                output.Write("label");
                for (int i = 0; i < nr_class; i++)
                    output.Write(" " + model.ClassLabels[i]);
                output.Write("\n");
            }

            if (model.PairwiseProbabilityA != null)
            // regression has probA only
            {
                output.Write("probA");
                for (int i = 0; i < nr_class * (nr_class - 1) / 2; i++)
                    output.Write(" " + model.PairwiseProbabilityA[i]);
                output.Write("\n");
            }
            if (model.PairwiseProbabilityB != null)
            {
                output.Write("probB");
                for (int i = 0; i < nr_class * (nr_class - 1) / 2; i++)
                    output.Write(" " + model.PairwiseProbabilityB[i]);
                output.Write("\n");
            }

            if (model.NumberOfSVPerClass != null)
            {
                output.Write("nr_sv");
                for (int i = 0; i < nr_class; i++)
                    output.Write(" " + model.NumberOfSVPerClass[i]);
                output.Write("\n");
            }

            output.Write("SV\n");
            double[][] sv_coef = model.SupportVectorCoefficients;
            Node[][] SV = model.SupportVectors;

            for (int i = 0; i < l; i++)
            {
                for (int j = 0; j < nr_class - 1; j++)
                    output.Write(sv_coef[j][i] + " ");

                Node[] p = SV[i];
                if (p.Length == 0)
                {
                    output.WriteLine();
                    continue;
                }
                if (param.KernelType == KernelType.PRECOMPUTED)
                    output.Write("0:{0}", (int)p[0].Value);
                else
                {
                    output.Write("{0}:{1}", p[0].Index, p[0].Value);
                    for (int j = 1; j < p.Length; j++)
                        output.Write(" {0}:{1}", p[j].Index, p[j].Value);
                }
                output.WriteLine();
            }

            output.Flush();
        }
	}
}

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
成人一级视频在线观看| 91香蕉视频mp4| 亚洲欧美一区二区久久| 欧美一区二区三区免费视频| 成人精品免费视频| 免费成人av资源网| 亚洲一区在线看| 日本一区二区电影| 日韩一级免费一区| 欧美午夜理伦三级在线观看| 国产成人av资源| 久久精品国产成人一区二区三区| 一区二区三区久久久| 国产精品色呦呦| 久久嫩草精品久久久精品 | 91麻豆成人久久精品二区三区| 日本美女视频一区二区| 综合婷婷亚洲小说| 欧美国产精品一区二区三区| 日韩午夜三级在线| 在线不卡一区二区| 欧洲另类一二三四区| 91在线看国产| 成人av在线一区二区| 国精品**一区二区三区在线蜜桃| 青青青爽久久午夜综合久久午夜 | 亚洲精品国产a| 亚洲国产成人私人影院tom| 欧美大片在线观看| 日韩精品中文字幕一区| 欧美一区二区三区四区视频| 欧美日韩高清影院| 欧美日韩久久一区二区| 欧美午夜电影在线播放| 色视频一区二区| 91麻豆国产在线观看| 99久久精品久久久久久清纯| 成人91在线观看| 国产成人精品三级麻豆| 国产剧情一区在线| 国产精品主播直播| 国产精品亚洲第一区在线暖暖韩国| 精品一区二区久久| 黄一区二区三区| 国产精品99久| 成人高清免费观看| zzijzzij亚洲日本少妇熟睡| 99久久精品国产观看| 色婷婷av一区二区三区软件| 色婷婷久久久久swag精品| 欧美午夜影院一区| 欧美一区二区美女| 久久这里只精品最新地址| 久久精品人人做人人综合| 欧美激情资源网| 亚洲欧美日韩国产手机在线| 一片黄亚洲嫩模| 天堂在线亚洲视频| 久久成人羞羞网站| 国产伦精品一区二区三区在线观看 | 国产精品国产自产拍高清av王其| 国产精品系列在线| 一区二区三区日韩精品视频| 亚洲永久精品国产| 麻豆专区一区二区三区四区五区| 国产一区二区三区免费在线观看| 成人三级伦理片| 在线观看av一区二区| 日韩欧美一二三四区| 欧美国产乱子伦| 亚洲妇女屁股眼交7| 久久99精品久久只有精品| 成人免费高清在线| 欧美无砖专区一中文字| 欧美www视频| 亚洲欧洲国产日本综合| 午夜精品久久久| 国产精品99久久久久久宅男| 色哟哟精品一区| 精品国产乱码久久久久久牛牛| 亚洲国产精品成人综合色在线婷婷| 亚洲女人****多毛耸耸8| 日本欧美一区二区三区| 91影视在线播放| 日韩欧美在线不卡| 亚洲四区在线观看| 精品一区二区在线观看| 色偷偷一区二区三区| 亚洲精品在线观| 婷婷激情综合网| 成人app网站| 精品欧美乱码久久久久久1区2区| 亚洲色欲色欲www在线观看| 久久电影网电视剧免费观看| 91精品1区2区| 国产欧美精品一区二区三区四区| 午夜亚洲国产au精品一区二区| 国产夫妻精品视频| 91精品国产aⅴ一区二区| 18成人在线观看| 国产一区二区三区精品欧美日韩一区二区三区| 91久久精品一区二区二区| 26uuu精品一区二区三区四区在线| 亚洲欧美另类久久久精品| 国产一区二区美女诱惑| 欧美日韩黄色一区二区| 亚洲精品亚洲人成人网在线播放| 国产一区二区伦理| 欧美大胆人体bbbb| 日韩二区三区四区| 91久久精品一区二区| 亚洲欧洲无码一区二区三区| 国产在线日韩欧美| 欧美一区二区久久久| 日韩制服丝袜av| 色吧成人激情小说| 亚洲人成伊人成综合网小说| 国产999精品久久久久久绿帽| 欧美一级午夜免费电影| 午夜精品久久久久久久久| 色香蕉久久蜜桃| 亚洲日本免费电影| caoporn国产一区二区| 久久一日本道色综合| 精品综合免费视频观看| 91精品国产综合久久精品麻豆| 亚洲综合视频在线观看| 色综合久久久久综合99| 亚洲欧洲一区二区在线播放| 成人av在线电影| 国产精品国产三级国产aⅴ原创| 国产精品一二一区| 中文字幕精品一区| 99久久国产综合精品女不卡 | 日韩国产欧美在线视频| 欧美日韩高清影院| 秋霞电影网一区二区| 91精品国产综合久久久久久久久久| 婷婷综合另类小说色区| 欧美精三区欧美精三区| 日韩精品国产欧美| 日韩欧美电影一区| 国产精品影视网| 国产精品无遮挡| 99re成人在线| 亚洲国产aⅴ天堂久久| 欧美日韩日本视频| 免费av网站大全久久| 精品国精品国产| 国产成人自拍网| 亚洲欧美日韩在线| 欧美三区在线视频| 免费成人美女在线观看.| 国产亚洲成aⅴ人片在线观看 | 欧美精品高清视频| 青青草原综合久久大伊人精品优势| 日韩欧美国产综合| 国产精品1024| 亚洲精品国产精华液| 欧美美女黄视频| 国模少妇一区二区三区| ●精品国产综合乱码久久久久| 欧洲国内综合视频| 免费成人深夜小野草| 国产精品狼人久久影院观看方式| 色婷婷综合久久久久中文一区二区| 日韩高清在线不卡| 久久精品男人的天堂| 色综合久久天天综合网| 日韩av中文字幕一区二区| 国产亚洲一本大道中文在线| 99综合电影在线视频| 偷拍亚洲欧洲综合| 久久九九国产精品| 欧美日韩精品是欧美日韩精品| 久久精品国产久精国产爱| 亚洲视频香蕉人妖| 日韩一区二区麻豆国产| aa级大片欧美| 麻豆一区二区三| 亚洲黄色av一区| 久久久久久久久99精品| 欧美日韩一区二区在线视频| 国产毛片精品一区| 亚洲va欧美va人人爽午夜 | 亚洲最快最全在线视频| 日韩欧美国产精品一区| 91亚洲男人天堂| 国产在线精品一区二区| 夜夜亚洲天天久久| 久久久久久电影| 欧美精品v日韩精品v韩国精品v| 国产福利91精品一区二区三区| 午夜精品免费在线| 综合欧美亚洲日本| 久久久久久久久久久黄色| 91精品国产91久久久久久最新毛片 | 亚洲色图制服丝袜| 久久综合狠狠综合久久激情 | 国产一区不卡精品|