亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? t_errors.m

?? 用Matlab編寫的一款計算調和常數的程序包
?? M
字號:
% Status of error estimates (Version 1.0, 1/Sep/01)
%
%  To generate a harmonic analysis, we
%
%     a) fit the series to either sines and cosines at specified
%        (positive) frequencies, or to complex exponentials at both
%        positive and negative frequencies. Traditionally sine/cosines
%        have been used, in t_tide I deal with the complex exponentials
%        as the math is conceptually (and practically) simpler. The
%        use of complex exponentials also unifies the treatment of
%        real time series (e.g. tidal height) and complex time
%        series (e.g. currents, u+i*v).
%     b) The complex amplitudes of constituents are corrected for
%        various factors (nodal modulations, inference, etc.)...
%     c) ...and then converted to ellipse parameters (semi-major axis,
%        Greenwich phase, etc.).
%
%  Since it is well-known that some of the less-important constituents
%  can be below the "geophysical noise" level, it is important to have 
%  confidence intervals for these estimates, giving some idea about
%  their trustworthiness for predictive purposes.
%
%  Currently two different methods of estimating confidence intervals
%  are implemented in t_tide.
%
%  1) "Linear Analysis"
%
%  Munk and Cartwright in their paper on the "response method" (Phil. 
%  Trans Roy. Soc. Lon. A, vol 259, 1966, pg 533-581) outlined the
%  analysis for estimating noise levels in spectra. Although this was 
%  used for "transfer function" estimates, the formalism was adapted by 
%  W. S. Brown and J. D. Irish (unpublished notes, 1991) for the case
%  when the transfer function is the output of a harmonic analysis. 
%  A conversion from errors in the cos/sine amplitudes to errors
%  in ellipse parameters (axis lengths, inclination, etc.) can be done
%  through a linearized analysis (B. Beardsley, unpublished notes, 1999,
%  checking earlier work by R. Signell).
%
%  In essence, 9 frequency bands are chosen, bracketing M0,M1...M8. In 
%  each band the amplitude of the residual power spectrum is estimated.
%  It is then assumed that this noise contaminates both sin and cosine
%  components of the harmonic fit equally. Errors in ellipse parameters
%  are determined through a linearized analysis in which variances are
%  summed, weighted by analytically calculated sensitivity terms.
%
%  The results appears to be adequate for real time series (e.g., 
%  tidal height), as long as the SNR (amp/error)^2 <10, and is probably 
%  not bad for SNR as low as 2 or 3.
%
%  The formalism has been extended to complex time series, with the
%  assumption that noise in the real and imaginary parts is 
%  uncorrelated, although the levels of noise in both directions are 
%  allowed to be different. Unfortunately this means that error bars 
%  are not rotationally independent, i.e., the size of error bars may 
%  change depending on whether you input your time series in N/E 
%  coordinates, or along/across bathymetry coordinates. 
%
%  I visualize the bivariate error model by seeing it as an ellipse on
%  the plane - if the ellipse is not pointing along the x or y axes,
%  this error analysis will fail to produce the correct results. Of 
%  course, you can always rotate the coordinate system so that it is 
%  aligned with the axes.
%
%  Thus I currently recommend that if you really care about your CI,
%  you submit your time series in a coordinate system in which the
%  ellipse semi-major axis lies roughly along one of the coordinate 
%  axes.
%  
%
% 2) "Nonlinear analysis"
%
% The linear analysis described above has two problems - first, it 
% linearizes a non-linear transformation, and second, it doesn't really
% account for complex noise which might be correlated.
%
% The first problem is probably not much of an issue, since it is of
% concern only at very low SNR where the results are probably not very
% useful anyway. However, it would be nice to do something about this.
% The second problem is more serious (in my opinion), since it 
% potentially affects any kind of current analysis.
%
% The modern way of dealing with nonlinearity is through resampling
% techniques. Here I use a 'parametric bootstrap'. The idea is to
% estimate an uncertainty in the complex amplitudes of the constituents.
% Assuming the original noise to be roughly white, so will the noise in
% the complex coefficients. However, there are interesting correlations
% between the real and imaginary parts of both positive and negative
% frequencies. These can be written in terms of a 4x4 matrix in which
% the variance and covariance of the real and imaginary parts of the 
% time series appear. An eigenvalue decomposition can be used to 
% generate a transformation matrix that will take 4 uncorrelated white
% noise series and give us noise of the correct characteristics; this 
% can then be use to generate a series of 'constituent replicates'.
%
% The replicates are then nonlinearly transformed into ellipse 
% parameters, and confidence intervals estimated directly from the 
% results, taking into account the nonlinearity.
% 
% The computational time required is essentially minimal using a modern
% PC.
%
% Thus, this can account for both the nonlinear transformation, and for
% correlated noise! So, what's the problem?
%
% The first is that, so far, I have done the math for just two cases:
%  a) white, correlated continuum spectrum (suitable for complex time
%     series with a flat background spectrum)
%  b) coloured, uncorrelated continuum spectrum (suitable for scalar
%     time series with a sloped background spectrum).
%
% Ideally, of course, I would like to handle coloured, correlated noise.
% I'm working on it...
%
%
% SUMMARY
%
% For scalar time series - either method is OK. The nonlinear method
% handles low SNR cases slightly better. This shows how well both 
% methods work for a relatively low noise level (for a detailed 
% explanation of the plots, see 'help t_synth'):
%
% >t_synth('nrun',40,'error','.1*colrand(SY,-1)','time',[0:24*30],'tidecon',[1 0 0 60]);
%
% And this is for higher noise levels where the transformations is more
% nonlinear.
%
% >t_synth('nrun',40,'error','20*colrand(SY,-1)','time',[0:24*30],'tidecon',[1 0 0 60]);
% 
% For vector time series. If your noise is isotropic (in space), but
% coloured (in time), both methods work fine. Again, the nonlinear 
% method handles low SNR cases slightly better:
%
% >t_synth('nrun',40,'error','.01*(colrand(SY,-1)+i*colrand(SY,-1))','time',[0:24*30]);
%
% >t_synth('nrun',20,'error','10*(colrand(SY,-1)+i*colrand(SY,-1))','time',[0:24*30]);
%
% If your noise is non-isotropic (in space) and spectrally flat (in time), 
% the nonlinear analysis wins hands down. Here is an extreme case, where the
% noise is at 45 degrees to the axes:
%
% >t_synth('nrun',20,'error','.1*(1+i)*randn(SY)','time',[0:24*30],'boota','w');
%
% However, noise is hardly ever spectrally flat in real life.
%
% If your noise is non-isotropic (in space) and spectrally coloured,
% then AS LONG AS YOU ROTATE THE TIME SERIES so that the noise in real
% and imaginary parts is uncorrelated, which is always possible for
% bivariate noise, then both methods works fine.
%
%
% R. Pawlowicz (rich@ocgy.ubc.ca)
% 1/Sep/01

help t_errors










?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美精品一区二区在线观看| 欧美精品日韩综合在线| 蜜臀久久99精品久久久画质超高清 | 日本va欧美va瓶| 性做久久久久久久久| 视频一区国产视频| 欧美aaa在线| 精品一区二区三区不卡| 国产在线精品一区二区三区不卡| 精品一区二区在线看| 国产麻豆日韩欧美久久| 国产91富婆露脸刺激对白| 成人免费毛片a| 日本高清不卡视频| 欧美电影在线免费观看| 欧美成人国产一区二区| 久久久不卡网国产精品二区| 国产欧美精品日韩区二区麻豆天美| 国产欧美一区二区精品性| 亚洲欧洲制服丝袜| 日本不卡在线视频| 懂色av中文一区二区三区| 99re热这里只有精品免费视频| 欧美亚洲高清一区二区三区不卡| 欧美一区二区播放| 国产精品蜜臀av| 亚洲丶国产丶欧美一区二区三区| 日本欧美韩国一区三区| 国产成人免费av在线| 在线观看av一区| 日韩欧美中文字幕制服| 国产精品色一区二区三区| 亚洲chinese男男1069| 国产伦精一区二区三区| 在线视频中文字幕一区二区| 精品国内片67194| 亚洲女人的天堂| 激情综合色综合久久| 高清成人免费视频| 制服丝袜成人动漫| 日韩一区在线播放| 久草热8精品视频在线观看| 不卡区在线中文字幕| 这里只有精品99re| **欧美大码日韩| 久久 天天综合| 欧美剧情电影在线观看完整版免费励志电影| 精品国产免费人成在线观看| 亚洲综合激情另类小说区| 国产老肥熟一区二区三区| 欧美精品电影在线播放| 亚洲精品国久久99热| 国产高清无密码一区二区三区| 在线播放中文字幕一区| 中文字幕佐山爱一区二区免费| 亚洲成人动漫在线观看| av亚洲精华国产精华精| 久久色在线观看| 蜜桃精品视频在线观看| 在线成人高清不卡| 亚洲成人福利片| 欧美性大战久久久久久久| 亚洲视频免费看| av电影一区二区| 国产精品久久久久久久蜜臀| 国产电影一区二区三区| 精品国产乱码久久久久久蜜臀| 首页综合国产亚洲丝袜| 欧美图片一区二区三区| 亚洲综合视频网| 欧美午夜精品久久久久久孕妇 | 亚洲一区精品在线| 日韩免费一区二区| 午夜天堂影视香蕉久久| 色婷婷国产精品综合在线观看| 中文av一区特黄| 成年人网站91| ...xxx性欧美| 欧美性猛片xxxx免费看久爱| 一区二区三区加勒比av| 欧美性视频一区二区三区| 亚洲一区二区美女| 91精品国产aⅴ一区二区| 日韩精品久久理论片| 欧美大度的电影原声| 精品一区在线看| 国产日韩av一区| 91在线一区二区三区| 亚洲自拍偷拍麻豆| 91精品国产欧美一区二区| 麻豆91小视频| 国产婷婷色一区二区三区在线| 成人激情文学综合网| 亚洲精品中文在线| 欧美丰满嫩嫩电影| 韩国精品久久久| 亚洲欧美视频一区| 91精品国产91久久久久久一区二区 | 国产伦精一区二区三区| 中文字幕免费一区| 在线视频你懂得一区二区三区| 亚洲第一主播视频| 精品区一区二区| 制服丝袜日韩国产| 久久国产麻豆精品| 亚洲色图制服丝袜| 8v天堂国产在线一区二区| 国产乱子轮精品视频| 亚洲日穴在线视频| 欧美变态tickle挠乳网站| 成人污污视频在线观看| 亚洲国产成人porn| 国产欧美一区二区在线观看| 欧美唯美清纯偷拍| 国产成人精品网址| 午夜精品久久久久| 国产精品午夜久久| 欧美一卡二卡在线观看| av在线综合网| 国产在线日韩欧美| 亚洲成人综合在线| 最好看的中文字幕久久| 精品国产乱码久久久久久图片| 色婷婷av久久久久久久| 激情文学综合丁香| 手机精品视频在线观看| 亚洲欧洲一区二区三区| 精品第一国产综合精品aⅴ| 欧美中文字幕久久| 99久免费精品视频在线观看 | 2023国产一二三区日本精品2022| 91免费视频网| 成人精品鲁一区一区二区| 欧美a级一区二区| 亚洲成人黄色影院| 一区二区三区不卡视频| 中文字幕一区二区三区四区 | 夜夜揉揉日日人人青青一国产精品| 国产日本欧美一区二区| 一区二区欧美国产| 中文字幕一区二区三区四区不卡 | 国产精品久久久久一区二区三区 | 国产精品久久久久影院色老大| 欧美成人一级视频| 日韩一区二区三区电影在线观看 | 久久精品综合网| 日韩欧美国产综合| 精品久久国产97色综合| 日韩一区二区免费在线电影| 在线免费观看成人短视频| 色偷偷成人一区二区三区91| 99精品国产一区二区三区不卡| 岛国精品在线观看| 成人av动漫在线| 波多野结衣在线一区| 99精品在线观看视频| 一本久久a久久精品亚洲| 96av麻豆蜜桃一区二区| 91在线视频观看| 在线观看日韩毛片| 欧美日韩视频在线第一区| 欧美日韩一区二区三区在线| 欧美精品色一区二区三区| 日韩一区二区三区精品视频| 日韩欧美成人一区| 国产欧美综合在线| 亚洲精品国产精华液| 亚洲国产毛片aaaaa无费看 | 国产精品国产自产拍高清av| 国产精品素人视频| 亚洲三级理论片| 亚洲第一电影网| 久久精品国产精品亚洲精品| 狠狠色丁香久久婷婷综| av福利精品导航| 欧美日韩三级一区二区| 久久久噜噜噜久噜久久综合| 国产精品久久久久久久久免费丝袜| 亚洲女人的天堂| 免费在线成人网| 成人免费看片app下载| 欧美在线免费视屏| 亚洲电影一区二区三区| 日韩主播视频在线| 国产成人亚洲精品狼色在线 | 亚洲国产裸拍裸体视频在线观看乱了| 偷拍日韩校园综合在线| 国产高清成人在线| 欧日韩精品视频| 久久久久久日产精品| 亚洲国产精品一区二区久久 | 韩国欧美国产1区| 色哟哟日韩精品| 精品国产免费一区二区三区四区| 亚洲视频免费看| 国产精品一区二区在线观看网站| 91成人免费电影| 亚洲国产精品成人综合| 免费观看日韩电影| 日本二三区不卡|