?? bn_mul.c
字號:
/* crypto/bn/bn_mul.c *//* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */#include <stdio.h>#include "cryptlib.h"#include "bn_lcl.h"#ifdef BN_RECURSION/* Karatsuba recursive multiplication algorithm * (cf. Knuth, The Art of Computer Programming, Vol. 2) *//* r is 2*n2 words in size, * a and b are both n2 words in size. * n2 must be a power of 2. * We multiply and return the result. * t must be 2*n2 words in size * We calculate * a[0]*b[0] * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0]) * a[1]*b[1] */void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, BN_ULONG *t) { int n=n2/2,c1,c2; unsigned int neg,zero; BN_ULONG ln,lo,*p;# ifdef BN_COUNT printf(" bn_mul_recursive %d * %d\n",n2,n2);# endif# ifdef BN_MUL_COMBA# if 0 if (n2 == 4) { bn_mul_comba4(r,a,b); return; }# endif if (n2 == 8) { bn_mul_comba8(r,a,b); return; }# endif /* BN_MUL_COMBA */ if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) { /* This should not happen */ bn_mul_normal(r,a,n2,b,n2); return; } /* r=(a[0]-a[1])*(b[1]-b[0]) */ c1=bn_cmp_words(a,&(a[n]),n); c2=bn_cmp_words(&(b[n]),b,n); zero=neg=0; switch (c1*3+c2) { case -4: bn_sub_words(t, &(a[n]),a, n); /* - */ bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */ break; case -3: zero=1; break; case -2: bn_sub_words(t, &(a[n]),a, n); /* - */ bn_sub_words(&(t[n]),&(b[n]),b, n); /* + */ neg=1; break; case -1: case 0: case 1: zero=1; break; case 2: bn_sub_words(t, a, &(a[n]),n); /* + */ bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */ neg=1; break; case 3: zero=1; break; case 4: bn_sub_words(t, a, &(a[n]),n); bn_sub_words(&(t[n]),&(b[n]),b, n); break; }# ifdef BN_MUL_COMBA if (n == 4) { if (!zero) bn_mul_comba4(&(t[n2]),t,&(t[n])); else memset(&(t[n2]),0,8*sizeof(BN_ULONG)); bn_mul_comba4(r,a,b); bn_mul_comba4(&(r[n2]),&(a[n]),&(b[n])); } else if (n == 8) { if (!zero) bn_mul_comba8(&(t[n2]),t,&(t[n])); else memset(&(t[n2]),0,16*sizeof(BN_ULONG)); bn_mul_comba8(r,a,b); bn_mul_comba8(&(r[n2]),&(a[n]),&(b[n])); } else# endif /* BN_MUL_COMBA */ { p= &(t[n2*2]); if (!zero) bn_mul_recursive(&(t[n2]),t,&(t[n]),n,p); else memset(&(t[n2]),0,n2*sizeof(BN_ULONG)); bn_mul_recursive(r,a,b,n,p); bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),n,p); } /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign * r[10] holds (a[0]*b[0]) * r[32] holds (b[1]*b[1]) */ c1=(int)(bn_add_words(t,r,&(r[n2]),n2)); if (neg) /* if t[32] is negative */ { c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2)); } else { /* Might have a carry */ c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2)); } /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) * r[10] holds (a[0]*b[0]) * r[32] holds (b[1]*b[1]) * c1 holds the carry bits */ c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2)); if (c1) { p= &(r[n+n2]); lo= *p; ln=(lo+c1)&BN_MASK2; *p=ln; /* The overflow will stop before we over write * words we should not overwrite */ if (ln < (BN_ULONG)c1) { do { p++; lo= *p; ln=(lo+1)&BN_MASK2; *p=ln; } while (ln == 0); } } }/* n+tn is the word length * t needs to be n*4 is size, as does r */void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int tn, int n, BN_ULONG *t) { int i,j,n2=n*2; int c1,c2,neg,zero; BN_ULONG ln,lo,*p;# ifdef BN_COUNT printf(" bn_mul_part_recursive %d * %d\n",tn+n,tn+n);# endif if (n < 8) { i=tn+n; bn_mul_normal(r,a,i,b,i); return; } /* r=(a[0]-a[1])*(b[1]-b[0]) */ c1=bn_cmp_words(a,&(a[n]),n); c2=bn_cmp_words(&(b[n]),b,n); zero=neg=0; switch (c1*3+c2) { case -4: bn_sub_words(t, &(a[n]),a, n); /* - */ bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */ break; case -3: zero=1; /* break; */ case -2: bn_sub_words(t, &(a[n]),a, n); /* - */ bn_sub_words(&(t[n]),&(b[n]),b, n); /* + */ neg=1; break; case -1: case 0: case 1: zero=1; /* break; */ case 2: bn_sub_words(t, a, &(a[n]),n); /* + */ bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */ neg=1; break; case 3: zero=1; /* break; */ case 4: bn_sub_words(t, a, &(a[n]),n); bn_sub_words(&(t[n]),&(b[n]),b, n); break; } /* The zero case isn't yet implemented here. The speedup would probably be negligible. */# if 0 if (n == 4) { bn_mul_comba4(&(t[n2]),t,&(t[n])); bn_mul_comba4(r,a,b); bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn); memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2)); } else# endif if (n == 8) { bn_mul_comba8(&(t[n2]),t,&(t[n])); bn_mul_comba8(r,a,b); bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn); memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2)); } else { p= &(t[n2*2]); bn_mul_recursive(&(t[n2]),t,&(t[n]),n,p); bn_mul_recursive(r,a,b,n,p); i=n/2; /* If there is only a bottom half to the number, * just do it */ j=tn-i; if (j == 0) { bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),i,p); memset(&(r[n2+i*2]),0,sizeof(BN_ULONG)*(n2-i*2)); } else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */ { bn_mul_part_recursive(&(r[n2]),&(a[n]),&(b[n]), j,i,p); memset(&(r[n2+tn*2]),0, sizeof(BN_ULONG)*(n2-tn*2)); } else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */ { memset(&(r[n2]),0,sizeof(BN_ULONG)*n2); if (tn < BN_MUL_RECURSIVE_SIZE_NORMAL) { bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn); } else { for (;;) { i/=2; if (i < tn) { bn_mul_part_recursive(&(r[n2]), &(a[n]),&(b[n]), tn-i,i,p); break; } else if (i == tn) { bn_mul_recursive(&(r[n2]), &(a[n]),&(b[n]), i,p); break; } } } } } /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign * r[10] holds (a[0]*b[0]) * r[32] holds (b[1]*b[1]) */ c1=(int)(bn_add_words(t,r,&(r[n2]),n2)); if (neg) /* if t[32] is negative */ { c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2)); } else { /* Might have a carry */ c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2)); } /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) * r[10] holds (a[0]*b[0]) * r[32] holds (b[1]*b[1]) * c1 holds the carry bits */ c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2)); if (c1) { p= &(r[n+n2]); lo= *p; ln=(lo+c1)&BN_MASK2; *p=ln; /* The overflow will stop before we over write * words we should not overwrite */ if (ln < (BN_ULONG)c1) { do { p++; lo= *p; ln=(lo+1)&BN_MASK2; *p=ln; } while (ln == 0); } } }/* a and b must be the same size, which is n2. * r needs to be n2 words and t needs to be n2*2 */void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, BN_ULONG *t) { int n=n2/2;# ifdef BN_COUNT printf(" bn_mul_low_recursive %d * %d\n",n2,n2);# endif
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -