亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? gf2exfactoring.txt

?? 一個(gè)比較通用的大數(shù)運(yùn)算庫
?? TXT
字號(hào):

/**************************************************************************\

MODULE: GF2EXFactoring

SUMMARY:

Routines are provided for factorization of polynomials over GF2E, as
well as routines for related problems such as testing irreducibility
and constructing irreducible polynomials of given degree.

\**************************************************************************/

#include <NTL/GF2EX.h>
#include <NTL/pair_GF2EX_long.h>

void SquareFreeDecomp(vec_pair_GF2EX_long& u, const GF2EX& f);
vec_pair_GF2EX_long SquareFreeDecomp(const GF2EX& f);

// Performs square-free decomposition.  f must be monic.  If f =
// prod_i g_i^i, then u is set to a list of pairs (g_i, i).  The list
// is is increasing order of i, with trivial terms (i.e., g_i = 1)
// deleted.


void FindRoots(vec_GF2E& x, const GF2EX& f);
vec_GF2E FindRoots(const GF2EX& f);

// f is monic, and has deg(f) distinct roots.  returns the list of
// roots

void FindRoot(GF2E& root, const GF2EX& f);
GF2E FindRoot(const GF2EX& f);


// finds a single root of f.  assumes that f is monic and splits into
// distinct linear factors


void SFBerlekamp(vec_GF2EX& factors, const GF2EX& f, long verbose=0);
vec_GF2EX  SFBerlekamp(const GF2EX& f, long verbose=0);

// Assumes f is square-free and monic.  returns list of factors of f.
// Uses "Berlekamp" approach, as described in detail in [Shoup,
// J. Symbolic Comp. 20:363-397, 1995].


void berlekamp(vec_pair_GF2EX_long& factors, const GF2EX& f, 
               long verbose=0);

vec_pair_GF2EX_long berlekamp(const GF2EX& f, long verbose=0);


// returns a list of factors, with multiplicities.  f must be monic.
// Calls SFBerlekamp.



void NewDDF(vec_pair_GF2EX_long& factors, const GF2EX& f, const GF2EX& h,
         long verbose=0);

vec_pair_GF2EX_long NewDDF(const GF2EX& f, const GF2EX& h,
         long verbose=0);


// This computes a distinct-degree factorization.  The input must be
// monic and square-free.  factors is set to a list of pairs (g, d),
// where g is the product of all irreducible factors of f of degree d.
// Only nontrivial pairs (i.e., g != 1) are included.  The polynomial
// h is assumed to be equal to X^{2^{GF2E::degree()}} mod f,
// which can be computed efficiently using the function FrobeniusMap 
// (see below).
// This routine  implements the baby step/giant step algorithm 
// of [Kaltofen and Shoup, STOC 1995], 
// further described in [Shoup, J. Symbolic Comp. 20:363-397, 1995].

// NOTE: When factoring "large" polynomials,
// this routine uses external files to store some intermediate
// results, which are removed if the routine terminates normally.
// These files are stored in the current directory under names of the
// form ddf-*-baby-* and ddf-*-giant-*.
// The definition of "large" is controlled by the variable

      extern double GF2EXFileThresh

// which can be set by the user.  If the sizes of the tables
// exceeds GF2EXFileThresh KB, external files are used.
// Initial value is 256.



void EDF(vec_GF2EX& factors, const GF2EX& f, const GF2EX& h,
         long d, long verbose=0);

vec_GF2EX EDF(const GF2EX& f, const GF2EX& h,
         long d, long verbose=0);

// Performs equal-degree factorization.  f is monic, square-free, and
// all irreducible factors have same degree.  
// h = X^{2^{GF2E::degree()}} mod f,
// which can be computed efficiently using the function FrobeniusMap 
// (see below).
// d = degree of irreducible factors of f.  
// This routine implements the algorithm of [von zur Gathen and Shoup,
// Computational Complexity 2:187-224, 1992]

void RootEDF(vec_GF2EX& factors, const GF2EX& f, long verbose=0);
vec_GF2EX RootEDF(const GF2EX& f, long verbose=0);

// EDF for d==1


void SFCanZass(vec_GF2EX& factors, const GF2EX& f, long verbose=0);
vec_GF2EX SFCanZass(const GF2EX& f, long verbose=0);

// Assumes f is monic and square-free.  returns list of factors of f.
// Uses "Cantor/Zassenhaus" approach, using the routines NewDDF and
// EDF above.


void CanZass(vec_pair_GF2EX_long& factors, const GF2EX& f, 
             long verbose=0);

vec_pair_GF2EX_long CanZass(const GF2EX& f, long verbose=0);


// returns a list of factors, with multiplicities.  f must be monic.
// Calls SquareFreeDecomp and SFCanZass.

// NOTE: these routines use modular composition.  The space
// used for the required tables can be controlled by the variable
// GF2EXArgBound (see GF2EX.txt).



void mul(GF2EX& f, const vec_pair_GF2EX_long& v);
GF2EX mul(const vec_pair_GF2EX_long& v);

// multiplies polynomials, with multiplicities


/**************************************************************************\

                            Irreducible Polynomials

\**************************************************************************/

long ProbIrredTest(const GF2EX& f, long iter=1);

// performs a fast, probabilistic irreduciblity test.  The test can
// err only if f is reducible, and the error probability is bounded by
// 2^{-iter*GF2E::degree()}.  This implements an algorithm from [Shoup,
// J. Symbolic Comp. 17:371-391, 1994].

long DetIrredTest(const GF2EX& f);

// performs a recursive deterministic irreducibility test.  Fast in
// the worst-case (when input is irreducible).  This implements an
// algorithm from [Shoup, J. Symbolic Comp. 17:371-391, 1994].

long IterIrredTest(const GF2EX& f);

// performs an iterative deterministic irreducibility test, based on
// DDF.  Fast on average (when f has a small factor).

void BuildIrred(GF2EX& f, long n);
GF2EX BuildIrred_GF2EX(long n);

// Build a monic irreducible poly of degree n. 

void BuildRandomIrred(GF2EX& f, const GF2EX& g);
GF2EX BuildRandomIrred(const GF2EX& g);

// g is a monic irreducible polynomial.  Constructs a random monic
// irreducible polynomial f of the same degree.

void FrobeniusMap(GF2EX& h, const GF2EXModulus& F);
GF2EX FrobeniusMap(const GF2EXModulus& F);

// Computes h = X^{2^{GF2E::degree()}} mod F, 
// by either iterated squaring or modular
// composition.  The latter method is based on a technique developed
// in Kaltofen & Shoup (Faster polynomial factorization over high
// algebraic extensions of finite fields, ISSAC 1997).  This method is
// faster than iterated squaring when deg(F) is large relative to
// GF2E::degree().


long IterComputeDegree(const GF2EX& h, const GF2EXModulus& F);

// f is assumed to be an "equal degree" polynomial, and h =
// X^{2^{GF2E::degree()}} mod f (see function FrobeniusMap above) 
// The common degree of the irreducible factors
// of f is computed.  Uses a "baby step/giant step" algorithm, similar
// to NewDDF.  Although asymptotocally slower than RecComputeDegree
// (below), it is faster for reasonably sized inputs.

long RecComputeDegree(const GF2EX& h, const GF2EXModulus& F);

// f is assumed to be an "equal degree" polynomial, h = X^{2^{GF2E::degree()}}
// mod f (see function FrobeniusMap above).  
// The common degree of the irreducible factors of f is
// computed. Uses a recursive algorithm similar to DetIrredTest.

void TraceMap(GF2EX& w, const GF2EX& a, long d, const GF2EXModulus& F,
              const GF2EX& h);

GF2EX TraceMap(const GF2EX& a, long d, const GF2EXModulus& F,
              const GF2EX& h);

// Computes w = a+a^q+...+^{q^{d-1}} mod f; it is assumed that d >= 0,
// and h = X^q mod f, q a power of 2^{GF2E::degree()}.  This routine
// implements an algorithm from [von zur Gathen and Shoup,
// Computational Complexity 2:187-224, 1992].
// If q = 2^{GF2E::degree()}, then h can be computed most efficiently
// by using the function FrobeniusMap above.

void PowerCompose(GF2EX& w, const GF2EX& h, long d, const GF2EXModulus& F);

GF2EX PowerCompose(const GF2EX& h, long d, const GF2EXModulus& F);

// Computes w = X^{q^d} mod f; it is assumed that d >= 0, and h = X^q
// mod f, q a power of 2^{GF2E::degree()}.  This routine implements an
// algorithm from [von zur Gathen and Shoup, Computational Complexity
// 2:187-224, 1992].
// If q = 2^{GF2E::degree()}, then h can be computed most efficiently
// by using the function FrobeniusMap above.

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美精品一二三四| 欧美在线一区二区三区| 日韩精品在线一区二区| 久久se精品一区二区| 久久一区二区三区四区| av电影在线观看一区| 一区二区欧美视频| 日韩三级在线免费观看| 精品亚洲porn| 成人免费小视频| 欧美高清视频一二三区| 国产成人在线视频免费播放| 亚洲精品日日夜夜| 欧美一区二区三区免费| 成人免费观看男女羞羞视频| 亚洲成人精品一区二区| 精品91自产拍在线观看一区| 成年人网站91| 免费亚洲电影在线| 国产精品午夜久久| 欧美日韩国产在线观看| 国产一区在线不卡| 亚洲一区二区偷拍精品| 欧美成人三级在线| 99久免费精品视频在线观看| 丝袜亚洲精品中文字幕一区| 国产精品美女一区二区在线观看| 91精品福利视频| 国产综合色在线| 亚洲高清免费一级二级三级| 精品国产1区二区| 欧美色综合网站| 成人性视频网站| 蜜臀久久久99精品久久久久久| 亚洲国产成人自拍| 日韩精品影音先锋| 在线视频国产一区| 丁香网亚洲国际| 奇米色一区二区三区四区| 亚洲图片激情小说| 久久人人97超碰com| 欧美精品亚洲二区| 色偷偷久久一区二区三区| 国产黄人亚洲片| 日本欧美一区二区在线观看| 亚洲精品视频一区| 国产精品久久久久久久久果冻传媒| 日韩一区二区电影| 欧美三级电影在线观看| 91香蕉视频在线| 国产凹凸在线观看一区二区| 麻豆成人久久精品二区三区小说| 一区二区三区四区精品在线视频| 国产精品久久久爽爽爽麻豆色哟哟 | 国产高清在线观看免费不卡| 天天亚洲美女在线视频| 夜夜爽夜夜爽精品视频| 日韩一区在线免费观看| 久久久国际精品| 精品av综合导航| 久久综合久久综合亚洲| 欧美xxxx老人做受| 精品三级在线看| 日韩精品一区二区三区视频播放 | 国内久久精品视频| 麻豆精品一区二区| 久久精品国产亚洲aⅴ| 欧美aaaaaa午夜精品| 奇米在线7777在线精品| 日本系列欧美系列| 蜜臀av亚洲一区中文字幕| 免费在线观看成人| 麻豆freexxxx性91精品| 久久99精品久久久久| 美腿丝袜亚洲综合| 国产一区二区三区免费播放| 久久99精品久久久久久国产越南| 精品一区二区三区影院在线午夜| 美女久久久精品| 精品一区二区三区免费| 3751色影院一区二区三区| 国产精品亚洲а∨天堂免在线| 国产真实精品久久二三区| 精品一区二区三区免费视频| 国产九色sp调教91| av在线不卡免费看| 色综合咪咪久久| 欧美日韩中文国产| 日韩女优av电影| 久久综合色8888| 一区精品在线播放| 夜夜嗨av一区二区三区四季av| 亚洲成人av在线电影| 日韩精品国产精品| 国产精品中文字幕欧美| 成人av集中营| 欧美伊人久久大香线蕉综合69| 欧美日韩精品二区第二页| 欧美电视剧免费全集观看| 欧美激情在线观看视频免费| 亚洲欧美偷拍三级| 日韩不卡一区二区| 国产成人综合网| 欧美亚洲日本一区| 日韩精品一区二区三区在线 | 一区二区三区在线播| 日韩av午夜在线观看| 国产精品自在欧美一区| 91高清视频在线| 精品日韩在线观看| 亚洲视频一二三区| 美女视频免费一区| 91网站视频在线观看| 91精品国产一区二区| 久久久久国产精品麻豆ai换脸| 一区二区三区四区在线播放| 久久精品国产网站| 色天使久久综合网天天| 精品欧美乱码久久久久久| 亚洲人成在线播放网站岛国| 久久精品国产精品亚洲红杏| 色婷婷激情综合| 久久精品人人做人人综合| 亚洲一区二区高清| 国产乱码精品一品二品| 欧美日韩1区2区| 136国产福利精品导航| 国精产品一区一区三区mba视频| 欧美最猛黑人xxxxx猛交| 26uuu久久综合| 日韩精品欧美精品| 欧美在线免费视屏| 国产精品看片你懂得| 极品少妇xxxx精品少妇偷拍| 欧美综合欧美视频| 国产精品色在线观看| 奇米888四色在线精品| 欧美午夜精品一区二区蜜桃| 中文字幕一区不卡| 国产精品中文有码| 亚洲精品一区二区三区四区高清| 亚洲va欧美va国产va天堂影院| 成人激情小说网站| 国产蜜臀97一区二区三区 | 欧美变态凌虐bdsm| 亚洲成人久久影院| 在线观看av一区二区| 亚洲视频在线观看三级| www.日韩大片| 国产精品电影院| 成人激情开心网| 久久免费的精品国产v∧| 美女视频黄 久久| 日韩一二三区视频| 日韩精品久久久久久| 欧美美女bb生活片| 天堂成人国产精品一区| 欧美日韩一本到| 亚洲一级不卡视频| 欧美老肥妇做.爰bbww视频| 一区二区欧美视频| 欧美日韩免费一区二区三区视频 | 日本一区免费视频| 国产精品123| 国产欧美日韩不卡免费| 波多野结衣亚洲| 亚洲男人天堂一区| 在线观看91精品国产入口| 亚洲国产另类精品专区| 6080日韩午夜伦伦午夜伦| 男女视频一区二区| 欧美精品一区二区三区一线天视频| 毛片av一区二区| 国产偷国产偷精品高清尤物| 成人影视亚洲图片在线| 亚洲欧美另类图片小说| 欧美吞精做爰啪啪高潮| 天堂蜜桃91精品| 欧美精品一区二区三| 粉嫩高潮美女一区二区三区| 国产精品美女久久久久久2018| av一区二区三区| 亚洲午夜日本在线观看| 欧美一区二区三区播放老司机| 精品影院一区二区久久久| 欧美激情资源网| 欧美亚洲日本一区| 狠狠网亚洲精品| 亚洲色图欧美偷拍| 欧美精品1区2区3区| 国产精品一区二区免费不卡| 日韩毛片视频在线看| 欧美在线三级电影| 国产中文一区二区三区| 亚洲色图.com| 日韩欧美在线123| 99国产精品一区| 蜜臀av一级做a爰片久久| 中文天堂在线一区| 91精品视频网|