?? zz_pex.txt
字號:
NOTE: A ZZ_pEX may be used wherever a ZZ_pEXModulus is required,
and a ZZ_pEXModulus may be used wherever a ZZ_pEX is required.
\**************************************************************************/
class ZZ_pEXModulus {
public:
ZZ_pEXModulus(); // initially in an unusable state
ZZ_pEXModulus(const ZZ_pEX& f); // initialize with f, deg(f) > 0
ZZ_pEXModulus(const ZZ_pEXModulus&); // copy
ZZ_pEXModulus& operator=(const ZZ_pEXModulus&); // assignment
~ZZ_pEXModulus(); // destructor
operator const ZZ_pEX& () const; // implicit read-only access to f
const ZZ_pEX& val() const; // explicit read-only access to f
};
void build(ZZ_pEXModulus& F, const ZZ_pEX& f);
// pre-computes information about f and stores it in F. Must have
// deg(f) > 0. Note that the declaration ZZ_pEXModulus F(f) is
// equivalent to ZZ_pEXModulus F; build(F, f).
// In the following, f refers to the polynomial f supplied to the
// build routine, and n = deg(f).
long deg(const ZZ_pEXModulus& F); // return n=deg(f)
void MulMod(ZZ_pEX& x, const ZZ_pEX& a, const ZZ_pEX& b,
const ZZ_pEXModulus& F);
ZZ_pEX MulMod(const ZZ_pEX& a, const ZZ_pEX& b, const ZZ_pEXModulus& F);
// x = (a * b) % f; deg(a), deg(b) < n
void SqrMod(ZZ_pEX& x, const ZZ_pEX& a, const ZZ_pEXModulus& F);
ZZ_pEX SqrMod(const ZZ_pEX& a, const ZZ_pEXModulus& F);
// x = a^2 % f; deg(a) < n
void PowerMod(ZZ_pEX& x, const ZZ_pEX& a, const ZZ& e, const ZZ_pEXModulus& F);
ZZ_pEX PowerMod(const ZZ_pEX& a, const ZZ& e, const ZZ_pEXModulus& F);
void PowerMod(ZZ_pEX& x, const ZZ_pEX& a, long e, const ZZ_pEXModulus& F);
ZZ_pEX PowerMod(const ZZ_pEX& a, long e, const ZZ_pEXModulus& F);
// x = a^e % f; e >= 0, deg(a) < n. Uses a sliding window algorithm.
// (e may be negative)
void PowerXMod(ZZ_pEX& x, const ZZ& e, const ZZ_pEXModulus& F);
ZZ_pEX PowerXMod(const ZZ& e, const ZZ_pEXModulus& F);
void PowerXMod(ZZ_pEX& x, long e, const ZZ_pEXModulus& F);
ZZ_pEX PowerXMod(long e, const ZZ_pEXModulus& F);
// x = X^e % f (e may be negative)
void rem(ZZ_pEX& x, const ZZ_pEX& a, const ZZ_pEXModulus& F);
// x = a % f
void DivRem(ZZ_pEX& q, ZZ_pEX& r, const ZZ_pEX& a, const ZZ_pEXModulus& F);
// q = a/f, r = a%f
void div(ZZ_pEX& q, const ZZ_pEX& a, const ZZ_pEXModulus& F);
// q = a/f
// operator notation:
ZZ_pEX operator/(const ZZ_pEX& a, const ZZ_pEXModulus& F);
ZZ_pEX operator%(const ZZ_pEX& a, const ZZ_pEXModulus& F);
ZZ_pEX& operator/=(ZZ_pEX& x, const ZZ_pEXModulus& F);
ZZ_pEX& operator%=(ZZ_pEX& x, const ZZ_pEXModulus& F);
/**************************************************************************\
vectors of ZZ_pEX's
\**************************************************************************/
NTL_vector_decl(ZZ_pEX,vec_ZZ_pEX)
// vec_ZZ_pEX
NTL_eq_vector_decl(ZZ_pEX,vec_ZZ_pEX)
// == and !=
NTL_io_vector_decl(ZZ_pEX,vec_ZZ_pEX)
// I/O operators
/**************************************************************************\
Modular Composition
Modular composition is the problem of computing g(h) mod f for
polynomials f, g, and h.
The algorithm employed is that of Brent & Kung (Fast algorithms for
manipulating formal power series, JACM 25:581-595, 1978), which uses
O(n^{1/2}) modular polynomial multiplications, and O(n^2) scalar
operations.
\**************************************************************************/
void CompMod(ZZ_pEX& x, const ZZ_pEX& g, const ZZ_pEX& h,
const ZZ_pEXModulus& F);
ZZ_pEX CompMod(const ZZ_pEX& g, const ZZ_pEX& h,
const ZZ_pEXModulus& F);
// x = g(h) mod f; deg(h) < n
void Comp2Mod(ZZ_pEX& x1, ZZ_pEX& x2, const ZZ_pEX& g1, const ZZ_pEX& g2,
const ZZ_pEX& h, const ZZ_pEXModulus& F);
// xi = gi(h) mod f (i=1,2); deg(h) < n.
void Comp3Mod(ZZ_pEX& x1, ZZ_pEX& x2, ZZ_pEX& x3,
const ZZ_pEX& g1, const ZZ_pEX& g2, const ZZ_pEX& g3,
const ZZ_pEX& h, const ZZ_pEXModulus& F);
// xi = gi(h) mod f (i=1..3); deg(h) < n.
/**************************************************************************\
Composition with Pre-Conditioning
If a single h is going to be used with many g's then you should build
a ZZ_pEXArgument for h, and then use the compose routine below. The
routine build computes and stores h, h^2, ..., h^m mod f. After this
pre-computation, composing a polynomial of degree roughly n with h
takes n/m multiplies mod f, plus n^2 scalar multiplies. Thus,
increasing m increases the space requirement and the pre-computation
time, but reduces the composition time.
\**************************************************************************/
struct ZZ_pEXArgument {
vec_ZZ_pEX H;
};
void build(ZZ_pEXArgument& H, const ZZ_pEX& h, const ZZ_pEXModulus& F, long m);
// Pre-Computes information about h. m > 0, deg(h) < n.
void CompMod(ZZ_pEX& x, const ZZ_pEX& g, const ZZ_pEXArgument& H,
const ZZ_pEXModulus& F);
ZZ_pEX CompMod(const ZZ_pEX& g, const ZZ_pEXArgument& H,
const ZZ_pEXModulus& F);
extern long ZZ_pEXArgBound;
// Initially 0. If this is set to a value greater than zero, then
// composition routines will allocate a table of no than about
// ZZ_pEXArgBound KB. Setting this value affects all compose routines
// and the power projection and minimal polynomial routines below,
// and indirectly affects many routines in ZZ_pEXFactoring.
/**************************************************************************\
power projection routines
\**************************************************************************/
void project(ZZ_pE& x, const ZZ_pEVector& a, const ZZ_pEX& b);
ZZ_pE project(const ZZ_pEVector& a, const ZZ_pEX& b);
// x = inner product of a with coefficient vector of b
void ProjectPowers(vec_ZZ_pE& x, const vec_ZZ_pE& a, long k,
const ZZ_pEX& h, const ZZ_pEXModulus& F);
vec_ZZ_pE ProjectPowers(const vec_ZZ_pE& a, long k,
const ZZ_pEX& h, const ZZ_pEXModulus& F);
// Computes the vector
// project(a, 1), project(a, h), ..., project(a, h^{k-1} % f).
// This operation is the "transpose" of the modular composition operation.
void ProjectPowers(vec_ZZ_pE& x, const vec_ZZ_pE& a, long k,
const ZZ_pEXArgument& H, const ZZ_pEXModulus& F);
vec_ZZ_pE ProjectPowers(const vec_ZZ_pE& a, long k,
const ZZ_pEXArgument& H, const ZZ_pEXModulus& F);
// same as above, but uses a pre-computed ZZ_pEXArgument
class ZZ_pEXTransMultiplier { /* ... */ };
void build(ZZ_pEXTransMultiplier& B, const ZZ_pEX& b, const ZZ_pEXModulus& F);
void UpdateMap(vec_ZZ_pE& x, const vec_ZZ_pE& a,
const ZZ_pEXMultiplier& B, const ZZ_pEXModulus& F);
vec_ZZ_pE UpdateMap(const vec_ZZ_pE& a,
const ZZ_pEXMultiplier& B, const ZZ_pEXModulus& F);
// Computes the vector
// project(a, b), project(a, (b*X)%f), ..., project(a, (b*X^{n-1})%f)
// Required: a.length() <= deg(F), deg(b) < deg(F).
// This is "transposed" MulMod by B.
// Input may have "high order" zeroes stripped.
// Output always has high order zeroes stripped.
/**************************************************************************\
Minimum Polynomials
These routines should be used only when ZZ_pE is a field.
All of these routines implement the algorithm from [Shoup, J. Symbolic
Comp. 17:371-391, 1994] and [Shoup, J. Symbolic Comp. 20:363-397,
1995], based on transposed modular composition and the
Berlekamp/Massey algorithm.
\**************************************************************************/
void MinPolySeq(ZZ_pEX& h, const vec_ZZ_pE& a, long m);
ZZ_pEX MinPolySeq(const vec_ZZ_pE& a, long m);
// computes the minimum polynomial of a linealy generated sequence; m
// is a bound on the degree of the polynomial; required: a.length() >=
// 2*m
void ProbMinPolyMod(ZZ_pEX& h, const ZZ_pEX& g, const ZZ_pEXModulus& F, long m);
ZZ_pEX ProbMinPolyMod(const ZZ_pEX& g, const ZZ_pEXModulus& F, long m);
void ProbMinPolyMod(ZZ_pEX& h, const ZZ_pEX& g, const ZZ_pEXModulus& F);
ZZ_pEX ProbMinPolyMod(const ZZ_pEX& g, const ZZ_pEXModulus& F);
// computes the monic minimal polynomial if (g mod f). m = a bound on
// the degree of the minimal polynomial; in the second version, this
// argument defaults to n. The algorithm is probabilistic, always
// returns a divisor of the minimal polynomial, and returns a proper
// divisor with probability at most m/2^{ZZ_pE::degree()}.
void MinPolyMod(ZZ_pEX& h, const ZZ_pEX& g, const ZZ_pEXModulus& F, long m);
ZZ_pEX MinPolyMod(const ZZ_pEX& g, const ZZ_pEXModulus& F, long m);
void MinPolyMod(ZZ_pEX& h, const ZZ_pEX& g, const ZZ_pEXModulus& F);
ZZ_pEX MinPolyMod(const ZZ_pEX& g, const ZZ_pEXModulus& F);
// same as above, but guarantees that result is correct
void IrredPolyMod(ZZ_pEX& h, const ZZ_pEX& g, const ZZ_pEXModulus& F, long m);
ZZ_pEX IrredPolyMod(const ZZ_pEX& g, const ZZ_pEXModulus& F, long m);
void IrredPolyMod(ZZ_pEX& h, const ZZ_pEX& g, const ZZ_pEXModulus& F);
ZZ_pEX IrredPolyMod(const ZZ_pEX& g, const ZZ_pEXModulus& F);
// same as above, but assumes that f is irreducible, or at least that
// the minimal poly of g is itself irreducible. The algorithm is
// deterministic (and is always correct).
/**************************************************************************\
Composition and Minimal Polynomials in towers
These are implementations of algorithms that will be described
and analyzed in a forthcoming paper.
The routines require that p is prime, but ZZ_pE need not be a field.
\**************************************************************************/
void CompTower(ZZ_pEX& x, const ZZ_pX& g, const ZZ_pEXArgument& h,
const ZZ_pEXModulus& F);
ZZ_pEX CompTower(const ZZ_pX& g, const ZZ_pEXArgument& h,
const ZZ_pEXModulus& F);
void CompTower(ZZ_pEX& x, const ZZ_pX& g, const ZZ_pEX& h,
const ZZ_pEXModulus& F);
ZZ_pEX CompTower(const ZZ_pX& g, const ZZ_pEX& h,
const ZZ_pEXModulus& F);
// x = g(h) mod f
void ProbMinPolyTower(ZZ_pX& h, const ZZ_pEX& g, const ZZ_pEXModulus& F,
long m);
ZZ_pX ProbMinPolyTower(const ZZ_pEX& g, const ZZ_pEXModulus& F, long m);
void ProbMinPolyTower(ZZ_pX& h, const ZZ_pEX& g, const ZZ_pEXModulus& F);
ZZ_pX ProbMinPolyTower(const ZZ_pEX& g, const ZZ_pEXModulus& F);
// Uses a probabilistic algorithm to compute the minimal
// polynomial of (g mod f) over ZZ_p.
// The parameter m is a bound on the degree of the minimal polynomial
// (default = deg(f)*ZZ_pE::degree()).
// In general, the result will be a divisor of the true minimimal
// polynomial. For correct results, use the MinPoly routines below.
void MinPolyTower(ZZ_pX& h, const ZZ_pEX& g, const ZZ_pEXModulus& F, long m);
ZZ_pX MinPolyTower(const ZZ_pEX& g, const ZZ_pEXModulus& F, long m);
void MinPolyTower(ZZ_pX& h, const ZZ_pEX& g, const ZZ_pEXModulus& F);
ZZ_pX MinPolyTower(const ZZ_pEX& g, const ZZ_pEXModulus& F);
// Same as above, but result is always correct.
void IrredPolyTower(ZZ_pX& h, const ZZ_pEX& g, const ZZ_pEXModulus& F, long m);
ZZ_pX IrredPolyTower(const ZZ_pEX& g, const ZZ_pEXModulus& F, long m);
void IrredPolyTower(ZZ_pX& h, const ZZ_pEX& g, const ZZ_pEXModulus& F);
ZZ_pX IrredPolyTower(const ZZ_pEX& g, const ZZ_pEXModulus& F);
// Same as above, but assumes the minimal polynomial is
// irreducible, and uses a slightly faster, deterministic algorithm.
/**************************************************************************\
Traces, norms, resultants
\**************************************************************************/
void TraceMod(ZZ_pE& x, const ZZ_pEX& a, const ZZ_pEXModulus& F);
ZZ_pE TraceMod(const ZZ_pEX& a, const ZZ_pEXModulus& F);
void TraceMod(ZZ_pE& x, const ZZ_pEX& a, const ZZ_pEX& f);
ZZ_pE TraceMod(const ZZ_pEX& a, const ZZ_pEXModulus& f);
// x = Trace(a mod f); deg(a) < deg(f)
void TraceVec(vec_ZZ_pE& S, const ZZ_pEX& f);
vec_ZZ_pE TraceVec(const ZZ_pEX& f);
// S[i] = Trace(X^i mod f), i = 0..deg(f)-1; 0 < deg(f)
// The above trace routines implement the asymptotically fast trace
// algorithm from [von zur Gathen and Shoup, Computational Complexity,
// 1992].
void NormMod(ZZ_pE& x, const ZZ_pEX& a, const ZZ_pEX& f);
ZZ_pE NormMod(const ZZ_pEX& a, const ZZ_pEX& f);
// x = Norm(a mod f); 0 < deg(f), deg(a) < deg(f)
void resultant(ZZ_pE& x, const ZZ_pEX& a, const ZZ_pEX& b);
ZZ_pE resultant(const ZZ_pEX& a, const ZZ_pEX& b);
// x = resultant(a, b)
// NormMod and resultant require that ZZ_pE is a field.
/**************************************************************************\
Miscellany
A ZZ_pEX f is represented as a vec_ZZ_pE, which can be accessed as
f.rep. The constant term is f.rep[0] and the leading coefficient is
f.rep[f.rep.length()-1], except if f is zero, in which case
f.rep.length() == 0. Note that the leading coefficient is always
nonzero (unless f is zero). One can freely access and modify f.rep,
but one should always ensure that the leading coefficient is nonzero,
which can be done by invoking f.normalize().
\**************************************************************************/
void clear(ZZ_pEX& x) // x = 0
void set(ZZ_pEX& x); // x = 1
void ZZ_pEX::normalize();
// f.normalize() strips leading zeros from f.rep.
void ZZ_pEX::SetMaxLength(long n);
// f.SetMaxLength(n) pre-allocate spaces for n coefficients. The
// polynomial that f represents is unchanged.
void ZZ_pEX::kill();
// f.kill() sets f to 0 and frees all memory held by f. Equivalent to
// f.rep.kill().
ZZ_pEX::ZZ_pEX(INIT_SIZE_TYPE, long n);
// ZZ_pEX(INIT_SIZE, n) initializes to zero, but space is pre-allocated
// for n coefficients
static const ZZ_pEX& zero();
// ZZ_pEX::zero() is a read-only reference to 0
void swap(ZZ_pEX& x, ZZ_pEX& y);
// swap x and y (via "pointer swapping")
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -