亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? zzxfactoring.txt

?? 一個比較通用的大數運算庫
?? TXT
字號:

/*****************************************************************************\

MODULE: ZZXFactoring

SUMMARY:

Routines are provided for factoring in ZZX.

See IMPLEMENTATION DETAILS below for a discussion of the algorithms used,
and of the flags available for selecting among these algorithms.

\*****************************************************************************/

#include <NTL/ZZX.h>
#include <NTL/pair_ZZX_long.h>

void SquareFreeDecomp(vec_pair_ZZX_long& u, const ZZX& f);
const vector(pair_ZZX_long SquareFreeDecomp(const ZZX& f);

// input is primitive, with positive leading coefficient.  Performs
// square-free decomposition.  If f = prod_i g_i^i, then u is set to a
// lest of pairs (g_i, i).  The list is is increasing order of i, with
// trivial terms (i.e., g_i = 1) deleted.


void MultiLift(vec_ZZX& A, const vec_zz_pX& a, const ZZX& f, long e,
               long verbose=0);

// Using current value p of zz_p::modulus(), this lifts the
// square-free factorization a mod p of f to a factorization A mod p^e
// of f.  It is required that f and all the polynomials in a are
// monic.



void SFFactor(vec_ZZX& factors, const ZZX& f, long verbose=0, long bnd=0);
vec_ZZX SFFactor(const ZZX& f, long verbose=0, long bnd=0);

// input f is primitive and square-free, with positive leading
// coefficient.  bnd, if not zero, indicates that f divides a
// polynomial h whose Euclidean norm is bounded by 2^{bnd} in absolute
// value.  This uses the routine SFCanZass in zz_pXFactoring and then
// performs a MultiLift, followed by a brute-force search for the
// factors.  

// A number of heuristics are used to speed up the factor-search step.
// See "implementation details" below.


void factor(ZZ& c,
            vec_pair_ZZX_long& factors,
            const ZZX& f,
            long verbose=0,
            long bnd=0);

// input f is is an arbitrary polynomial.  c is the content of f, and
// factors is the facrorization of its primitive part.  bnd is as in
// SFFactor.  The routine calls SquareFreeDecomp and SFFactor.

void mul(ZZX& x, const vec_pair_ZZX_long& a);
ZZX mul(const vec_pair_ZZX_long& a);
// multiplies polynomials, with multiplcities.




/*****************************************************************************\

IMPLEMENTATION DETAILS

To factor a polynomial, first its content is extracted, and it is
made squarefree.  This is typically very fast.

Second, a simple hack is performed: if the polynomial is of the
form g(x^l), then an attempt is made to factor g(k^m),
for divisors m of l, which can in some cases greatly simplify
the factorization task.
You can turn this "power hack" on/off by setting the following variable
to 1/0:

   extern long ZZXFac_PowerHack;  // initial value = 1


Third, the polynomial is factored modulo several
small primes, and one small prime p is selected as the "best".
You can choose the number of small primes that you want to use
by setting the following variable:

   extern long ZZXFac_InitNumPrimes;  // initial value = 7

Fourth, The factorization mod p is "lifted" to a factorization mod p^k
for a sufficiently large k.  This is done via quadratic Hensel
lifting.  Despite "folk wisdom" to the contrary, this is much
more efficient than linear Hensel lifting, especially since NTL
has very fast polynomial arithmetic.

After the "lifting phase" comes the "factor recombination phase".
The factorization mod p^k may be "finer" than the true factorization
over the integers, hence we have to "combine" subsets of modular factors
and test if these are factors over the integers.

There are two basic strategies:  the "Zassenhaus" method
and the "van Hoeij" method.

The van Hoeij method:

The van Hoeij method is fairly new, but it is so much better than
the older, Zassenhaus method, that it is now the default.
For a description of the method, go to Mark van Hoeij's home page:

   http://www.openmath.org/~hoeij/

The van Hoeij method is not really a specific algorithm, but a general
algorithmic approach: many parameters and strategies have to be selected
to obtain a specific algorithm, and it is a challenge to
make all of these choices so that the resulting algorithm works
fairly well on all input polynomials.

Set the following variable to 1 to enable the van Hoeij method,
and to 0 to revert to the Zassenhaus method:

   extern long ZZXFac_van_Hoeij; // initial value = 1

Note that the "power hack" is still on by default when using van Hoeij's
method, but we have arranged things so that the "power hack" strategy 
is abandoned if it appears to be too much a waste of time.
Unlike with the Zassenhaus method, using the "power hack" method with
van Hoeij can sometimes be a huge waste of time if one is not careful.



The Zassenhaus method:

The Zassenhaus method is essentially a brute-force search, but with
a lot of fancy "pruning" techniques, as described in the paper
[J. Abbott, V. Shoup, P. Zimmermann, "Factoring in Z[x]: the searching phase",
ISSAC 2000].

These heuristics are fairly effective, and allow one to easily deal
with up to around 30-40 modular factors, which is *much* more
than other Zassenhaus-based factorizers can deal with; however, after this, 
the exponential behavior of the algorithm really starts to dominate.

The behaviour of these heuristics can be fine tuned by
setting the following global variables:

   extern long ZZXFac_MaxNumPrimes;  // initial value = 50
   // During the factor recombination phase, if not much progress
   // is being made, occasionally more "local" information is 
   // collected by factoring f modulo another prime.
   // This "local" information is used to rule out degrees 
   // of potential factors during recombination.
   // This value bounds the total number of primes modulo which f 
   // is factored.

   extern long ZZXFac_MaxPrune;  // initial value = 10
   // A kind of "meet in the middle" strategy is used
   // to prune the search space during recombination.
   // For many (but not all) polynomials, this can greatly
   // reduce the running time.
   // When it does work, there is a time-space tradeoff:
   // If t = ZZXFac_MaxPrune, the running time will be reduced by a factor near
   // 2^t, but the table will take (at most) t*2^(t-1) bytes of storage.
   // Note that ZZXFac_MaxPrune is treated as an upper bound on t---the
   // factoring algorithm may decide to use a smaller value of t for
   // a number of reasons.



\*****************************************************************************/

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
av在线播放不卡| 狠狠色丁香九九婷婷综合五月| 欧美大胆人体bbbb| 91精品国产一区二区三区蜜臀| 欧美日本视频在线| 欧美三日本三级三级在线播放| 欧美伊人精品成人久久综合97| 99免费精品在线| 色琪琪一区二区三区亚洲区| 在线观看网站黄不卡| 欧美性生交片4| 日韩欧美在线影院| 国产视频一区二区在线观看| 国产亚洲一区二区三区四区| 国产精品不卡视频| 一区二区三区四区五区视频在线观看| 亚洲精品国产无天堂网2021 | 精品粉嫩超白一线天av| 精品久久久久香蕉网| 国产亚洲精品中文字幕| 国产精品短视频| 亚洲成人免费在线观看| 久草在线在线精品观看| 99久久精品国产毛片| 欧美片在线播放| 中文字幕不卡在线观看| 一区二区三区毛片| 蜜乳av一区二区| av不卡在线播放| 欧美一级二级在线观看| 中文字幕免费一区| 日本一不卡视频| 成人高清免费观看| 欧美久久免费观看| 中文字幕av在线一区二区三区| 亚洲风情在线资源站| 国产一区二区三区免费| 色综合av在线| 精品国产乱码久久久久久1区2区 | 成人午夜电影久久影院| 欧洲亚洲精品在线| 国产亚洲精品免费| 日韩av中文字幕一区二区| 99麻豆久久久国产精品免费| 日韩一区二区免费高清| 综合电影一区二区三区 | 久久这里只有精品6| 亚洲美女偷拍久久| 国产ts人妖一区二区| 日韩欧美一级精品久久| 亚洲欧美日韩精品久久久久| 国产永久精品大片wwwapp| 日本精品一区二区三区高清| 国产免费成人在线视频| 久久99精品久久久久久国产越南 | 91成人网在线| 日韩美女啊v在线免费观看| 免费在线观看精品| 欧美人妇做爰xxxⅹ性高电影 | 日韩欧美一级精品久久| 亚洲成人综合在线| 91看片淫黄大片一级| 国产精品久久久久久久久动漫| 美女在线观看视频一区二区| 欧美日本一区二区三区| 一区二区三区色| 色综合咪咪久久| 中文字幕欧美一| 不卡av在线免费观看| 国产欧美视频一区二区| 国产剧情av麻豆香蕉精品| 精品久久久久久综合日本欧美| 日日夜夜免费精品| 欧美电影一区二区| 日日夜夜免费精品| 91麻豆精品国产91久久久| 亚洲午夜激情av| 6080午夜不卡| 免费不卡在线观看| 欧美大片一区二区三区| 国产在线播放一区二区三区| 国产人妖乱国产精品人妖| 国产精品一区二区你懂的| 国产日产亚洲精品系列| 北条麻妃一区二区三区| 亚洲激情图片一区| 欧美性大战久久久久久久蜜臀| 亚洲国产aⅴ成人精品无吗| 欧美日韩在线免费视频| 日韩和的一区二区| 精品成人一区二区三区| 国产精品亚洲专一区二区三区| 国产性色一区二区| 一本色道久久综合精品竹菊| 日韩在线一区二区三区| 欧美va天堂va视频va在线| 国产盗摄精品一区二区三区在线| 中文字幕的久久| 欧美巨大另类极品videosbest| 精品综合久久久久久8888| 亚洲欧洲av色图| 欧美一区二区三区在线观看视频 | 天天色综合天天| 日韩女优毛片在线| av高清不卡在线| 丝袜美腿亚洲一区二区图片| 国产欧美一区二区精品仙草咪| 91丨国产丨九色丨pron| 天堂蜜桃91精品| 精品国产sm最大网站免费看| 色偷偷一区二区三区| 六月婷婷色综合| 亚洲人成亚洲人成在线观看图片| 欧美日韩精品三区| 成人高清免费观看| 久久97超碰色| 香蕉久久一区二区不卡无毒影院 | 国产精品亚洲人在线观看| 一区二区三区四区中文字幕| 欧美大片免费久久精品三p| 色综合视频一区二区三区高清| 免费在线看成人av| 亚洲在线中文字幕| 国产欧美日韩另类一区| 欧美放荡的少妇| 欧美中文字幕一区| 99re成人精品视频| 国产一区二区久久| 日本不卡不码高清免费观看| 亚洲人成网站在线| 国产精品高潮久久久久无| 日韩亚洲欧美在线| 欧美日韩1区2区| 色天天综合色天天久久| 成人性生交大片免费看中文网站| 首页国产欧美日韩丝袜| 一区二区欧美视频| 中文字幕一区二区三区在线播放| 久久久精品国产免大香伊| 欧美一区二区国产| 91精品欧美综合在线观看最新| 成人激情午夜影院| 成人综合激情网| 国产在线国偷精品产拍免费yy| 日本中文字幕一区二区有限公司| 亚洲午夜久久久久久久久电影网| 亚洲欧美国产三级| 亚洲视频网在线直播| 亚洲天堂成人在线观看| 国产精品乱码一区二三区小蝌蚪| 久久久久久久久久电影| 欧美videos大乳护士334| 91麻豆精品国产自产在线| 欧美日韩国产精选| 欧美乱熟臀69xxxxxx| 678五月天丁香亚洲综合网| 538在线一区二区精品国产| 91成人网在线| 欧美久久一二区| 日韩欧美国产一二三区| 欧美r级在线观看| 亚洲精品在线观看网站| 欧美高清在线视频| 最新中文字幕一区二区三区| 亚洲女同女同女同女同女同69| 一区二区三区四区在线免费观看| 亚洲综合视频在线观看| 日韩成人一级大片| 国产美女一区二区| 99久久久久久99| 9191成人精品久久| 欧美变态凌虐bdsm| 中文一区在线播放| 亚洲一区二区精品3399| 日韩精品一二三四| 韩国女主播成人在线| 成人国产精品免费观看| 欧美色老头old∨ideo| 精品sm在线观看| 亚洲精品日产精品乱码不卡| 午夜一区二区三区视频| 国产福利不卡视频| 欧美调教femdomvk| 国产婷婷色一区二区三区| 亚洲综合男人的天堂| 奇米四色…亚洲| 99久久伊人久久99| 51午夜精品国产| 欧美国产一区二区在线观看| 亚洲午夜精品一区二区三区他趣| 国产在线一区二区综合免费视频| 色呦呦国产精品| 欧美精品一区二区三区视频| 亚洲视频中文字幕| 国产乱国产乱300精品| 欧美日韩三级一区二区| 日韩久久精品一区| 一区二区三区在线看| 国产91丝袜在线播放九色| 欧美精品 日韩|