亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來(lái)到蟲(chóng)蟲(chóng)下載站! | ?? 資源下載 ?? 資源專(zhuān)輯 ?? 關(guān)于我們
? 蟲(chóng)蟲(chóng)下載站

?? tour-time.html

?? 一個(gè)比較通用的大數(shù)運(yùn)算庫(kù)
?? HTML
字號(hào):
<html>
<head>
<title>
A Tour of NTL: Some Performance Data  </title>
</head>

<body bgcolor="#fff9e6">

<center>
<a href="tour-gmp.html"><img src="arrow1.gif" alt="[Previous]" align=bottom></a>
 <a href="tour.html"><img src="arrow2.gif" alt="[Up]" align=bottom></a> 
<a href="tour-roadmap.html"> <img src="arrow3.gif" alt="[Next]" align=bottom></a>
</center>

<h1> 
<p align=center>
A Tour of NTL: Some Performance Data 
</p>
</h1>

<p> <hr> <p>

Here are some timing figures from using NTL.
The figures were obtained using a 700MHz Pentium III running Linux,
and using gcc version 2.95.2.
Also, GMP version 3.1.1 was used as the primary long integer package.

<p>
<h2>
Basic arithmetic
</h2>
<p>

For various values of <var>n</var>, we give the running times
for the following tasks:

<ul>
<li> IMUL: multiply two <var>n</var>-bit numbers.
<li> IREM: compute the remainder upon dividing a <var>2 n</var>-bit number
     by an <var>n</var>-bit number.
<li> IINV: compute an inverse modulo an <var>n</var>-bit prime number.
<li> PMUL: multiply two <var>(n-1)</var>-degree polynomials modulo
     an <var>n</var>-bit prime number.
</ul>

<p>

The time for IMUL, IREM, IINV is stated in units of <var>10^{-6}s</var>,
and that of PMUL in units of seconds.

<p>

<table border=1>
<tr align=center>
   <td> <var>n</var> <td> IMUL  <td> IREM 
   <td> IINV  <td> PMUL

<tr align=right>
   <td>  512 <td> 4 <td> 5 <td> 90 <td> 0.11

<tr align=right> 
   <td> 1024 <td> 11 <td> 13 <td> 260 <td> 0.74

<tr align=right>
   <td> 2048 <td> 33 <td> 53 <td> 580 <td> 2.71

<tr align=right>
   <td> 4096 <td> 110 <td> 168 <td> 1460 <td> 16.64

</table>


<p>
The IMUL, IREM, and IINV times essentially reflect the performance
of the underlying GMP routines (NTL's interface to these routines is
very "light weight").

<p>
The PMUL time reflects the performance of NTL's FFT implementation
of polynomial arithmetic.




<p>
<h2>
Factoring polynomials over finite fields
</h2>
<p>

We next consider the problem of factoriing of 
univariate polynomials modulo a prime <var>p</var>.
As test polynomials, we take the family of polynomials
defined in [V. Shoup, J. Symb. Comp. 20:363-397, 1995].
For every <var>n</var>, we define <var>p</var> 
to be the first prime greater than
<var>2^{n-2}*PI</var>, and the polynomial is 
<p>
<var>sum(a[n-i]*X^i, i = 0..n), </var>
<p>
where <var>a[0] = 1</var>, and <var>a[i+1] = a[i]^2 + 1.</var>

<p>
Here are some running times, in seconds, for various values of <var>n</var>:

<p>
<table border=1>
<tr align=right>
<td> <var>n</var> <td> 64 <td> 128 <td> 256 <td> 512 <td> 1024 
<tr align=right>
<td> &nbsp;  <td> 0.4 <td> 2.8 <td> 25.3 <td> 238.8 <td> 2255.4
</table>

<p>
Also of interest is space usage.
The <var>n = 512 </var> case used about 5MB main memory, 
and the <var>n = 1024</var> case used 18MB main memory.

<p>
<h2>
Factoring polynomials over the integers
</h2>
<p>

The second problem considered is factoring univariate polynomials 
over the integers.
In NTL 5.2, we have implemented
<a href="http://www.openmath.org/~hoeij">Mark van Hoeij's</a> new 
method for
polynomial factorization.
Prior to this, NTL offered an implementation of the classical
``Zassenhaus method,'' which can take exponential time
in the worst case, although the NTL algorithm implements
several novel ``pruning techniques'' that can subsantially
speed up the brute-force search stage of the Zassenhaus method.
However, van Hoeij's algorithm seems to have made all of these
techniques more or less obsolete.

<p>
Note that van Hoeij's method is more a general algorithmic technique 
than a specific algorithm.
To obtain a specific algorithm, several parameters and strategies 
must be chosen.
We have attempted to make these choices so as to obtain
a good, general-purpose algorithm that works fairly well
on a wide variety of input polynomials.
All of these choices are a bit heuristic, and any feedback
refarding possible improvements is most welcome.

<p>
We consider a number of test polynomials, collected and/or suggested
by  <a href="http://www.loria.fr/~zimmerma">Paul Zimmermann</a>
and Mark van Hoeij.


<p>
<ul>
<li> P1
has degree 156, coefficients up to
424 digits, and 36 factors (12 of degree 2, 15 of degree 4, 9 of degree 8).
<li>
P2
has degree 196, coefficients up to 419 digits
and 12 factors (2 of degree 2, 4 of degree 12 and 6 of degree 24).
<li>
P3
has degree 336, coefficients up to 597 digits and 16
factors (4 of degree 12 and 12 of degree 24).
<li>
P4
has degree 462, coefficients up to 756 digits, and two factors (degrees
66 and 396). 
<li>
P5 has degree 64, coefficients up to 40 digits, 
and is irreductible. 
<li>
P6
has degree 144,
coefficients up to 165 digits and has 
6 factors (4 of degree 12 and 2 of degree 48).
<li>
P7
has degree 384 and coefficients
up to 57 digits, and is irreducible.
<li>
P8
has degree 972, coefficients up to 213 digits, and is irreducible.
<li>
M12_5 
has degree 792, coefficients up to 2813 digits, and is irreducible.
<li>
M12_6 
has degree 924, coefficients up to 3937 digits, and
two factors (degrees 132 and 792).
</ul>

<p>

P1 comes from the Rational 
Univariate Representation (RUR) of the Cyclic 6 system,
and P2 and P3 come from the RUR of Cyclic 7.
<p>
P4 was contributed by A. Hulpke and H. Matzat: it is the 5-set resolvent of 
the polynomial f = x^11 + 101*x^10 + 4151*x^9 + 87851*x^8 + 976826*x^7 + 
4621826*x^6 - 5948674*x^5 - 113111674*x^4 - 12236299*x^3 + 1119536201*x^2 -
1660753125*x - 332150625 and its factorization would prove that f has
Galois group M11.
<p>
P5 is the Swinnerton-Dyer polynomial for 2,3,5,7,11,13, i.e. the
product of all terms of the form x+/-sqrt(2)+/-...+/-sqrt(13).
It is a "bad" polynomial for the method of factoring in Fp and
combining the factors in Z, because all its factors in Fp are of
degree at most 2.
<p>
P6 is the resultant with respect to x of the polynomial 
p = -2566974800*x^2 +134697056*x^4
-3312297*x^6 +43109*x^8 -308*x^10 +x^12 +1142440000 with p(y-2*x);
it was contributed by Frederic Lehobey and 
Nicolas Rennert.
<p>
P7 (contributed by John Abbott) is the norm of
x^6 + (a1+a2+a3+a4+a5+a6)*(x^4-x^2) + 1 with a6^2-2, a5^2-3, a4^2-5,
a3^2-7, a2^2-11 and a1^2-13, i.e. the resultant of that polynomial with
a6^2-2 with respect to a6, then with  a5^2-3 wrt a5, and so on.
<p>
P8 (contributed by Jean-Charles Faugere) comes from the Groebner basis
of Cyclic 9.
<p>
M12_5 and M12_6 are the 5th and 6th resolvents of the polynomial f
with Galois group M_{12} from the example in van Hoeij's paper.
These polynomials are non-monic (unlike the others).

<p>
We also used the polynomials S6, S7, S8, S9, and S10,
where S<var>i</var> is the Swinnerton-Dyer polynomial
of degree <var>2^i</var> corresponding to the first <var>i</var> primes.
These are all irreducible polynomials,
and are particularly bad for the Zassenhaus method.

<p>

The following two polynomials, H1 and H2, were suggested by Mark van Hoeij
as examples that may 
be particularly challenging to factor using his algorithm:

<p>
<ul>
<li> H1 is the polynomial (x-1)^960-1.
<li> H2 is a degree 4096 polynomial that is the product
of a number of cyclotomic polynomials 
(with factors of degrees 128, 128, 256, 512, 1024, and 2048).
</ul>

<p>
The polynomial H1 is defined as it is, rather than as x^960-1,
simply to "hide" the special structure of the polynomial  -- many
factorizers would apply special techniques to factor x^960-1,
but will most likely not apply these techniques to (x-1)^960-1.
To factor this polynomial with van Hoeij's method, one has to consider
very high traces, and thus it is essential that a good implementation
at some point crosses over to a "dense" strategy (or alternatively,
implements a brute-force factor search in combination with van Hoeij's
method).

<p>
You can <a href="http://www.shoup.net/ntl/testpolys.tar.gz">download</a>
all of the above polynomials (except H1, which is easy trivial to generate
from scratch).

<p>
We collected timing data for both the Zassenhaus and van Hoeij
algorithms, both with and without the so-called "power hack".
By setting a run-time switch, the user can choose to employ a "power hack",
which attempts to speed up the factorization if the polynomial
f(x) is of the form g(x^m) for some m &gt; 1.
However, while this "power hack" may sometimes speed things up substantially,
it can also slow things down -- for the Zassenhaus method, this slowdown
is usually negligible, but for our implementation of van Hoeij's algorithm,
this slowdown can be quite substantial.
Because of this, in our implementation of van Hoeij, we have modified
the power hack so that if it "seems" to be going slowly, it is abandoned.
This "early abort" power hack strategy 
is "on" by default, but can be turned off by the
user by setting a run-time switch.
<p>

In the table below, running time is presented in seconds
for each of the 4 methods:
<p>
<ul>
<li> Z-: Zassenhaus without power hack.
<li> Z+: Zassenhaus with power hack.
<li> H-: van Hoeij without power hack.
<li> H+: van Hoeij with power hack (NTL's default strategy).

</ul>
<p>

We also state for each polynomial the number <var>r</var> of modular
factors of the polynomial (this is not necessarily relevant for the
power-hack running times),

<p>
For comparison, we also state some running times for Maple version 5.1,
running on a 500MHz Alpha 21264/EV6,
as reported by Paul Zimmermann.

<p>

<table border=1>

<tr align=right> 
   <td align=left> &nbsp; <td> <var>r</var> <td> Z- <td> Z+ <td> H- <td> H+  <td> maple

<tr align=right>
   <td align=left> P1  <td> 60 <td> 2.8 <td> 0.3 <td> 2.8 <td> 0.3 <td> 0.6

<tr align=right>
   <td align=left> P2  <td> 20 <td> 4.3 <td> 1.5 <td> 4.3 <td> 1.5 <td> 1.8

<tr align=right>
   <td align=left> P3  <td> 28 <td> 13.4 <td> 3.0 <td> 13.4 <td> 3.0 <td> 2.4

<tr align=right>
   <td align=left> P4  <td> 42 <td> 40.2 <td> 40.2 <td> 27.2 <td> 27.2 <td> &gt; 5000.0

<tr align=right>
   <td align=left> P5  <td> 32 <td> 39.2 <td> 37.5 <td> 0.5 <td> 0.5 <td> &gt; 5000.0

<tr align=right>
   <td align=left> P6  <td> 48 <td> 24.0 <td> 0.9 <td> 2.9 <td> 1.0 <td> 48.0

<tr align=right>
   <td align=left> P7  <td> 76 <td> &nbsp; <td> &nbsp; <td> 15.5 <td> 13.2 <td> &nbsp;

<tr align=right>
   <td align=left> P8  <td> 54 <td> 3930.0 <td> 3940.0 <td> 44.3 <td> 52.9 <td> &gt; 5000.0 

<tr align=right>
   <td align=left> P4*rev(P4) <td> 84  <td> &nbsp;  <td> &nbsp;  <td> 826.0 <td> 826.0  <td> &nbsp;  

<tr align=right>
   <td align=left> H1 <td> 131  <td> &nbsp;  <td> &nbsp;  <td> 108.0 <td> 108.0  <td> &nbsp;  

<tr align=right>
   <td align=left> H2 <td> 256  <td> &nbsp;  <td> &nbsp;  <td> &nbsp;  <td> 379.0  <td> &nbsp;  

<tr align=right>
   <td align=left> S7 <td> 64  <td> &nbsp;  <td> &nbsp;  <td> 3.4 <td> 3.8  <td> &nbsp;  

<tr align=right>
   <td align=left> S8 <td> 128  <td> &nbsp;  <td> &nbsp;  <td> 53.4 <td> 64.6  <td> &nbsp;  

<tr align=right>
   <td align=left> S9 <td> 256  <td> &nbsp;  <td> &nbsp;  <td> 1200.0 <td> 1360.0  <td> &nbsp;  

<tr align=right>
   <td align=left> S10 <td> 512  <td> &nbsp;  <td> &nbsp;  <td> 31300.0 <td> 31700.0  <td> &nbsp;  

<tr align=right>
   <td align=left> S6*S7 <td> 96  <td> &nbsp;  <td> &nbsp;  <td> 18.8 <td> 7.2  <td> &nbsp;  

<tr align=right>
   <td align=left> S7*S9 <td> 320  <td> &nbsp;  <td> &nbsp;  <td> 3550.0 <td> 3630.0  <td> &nbsp;  

<tr align=right>
   <td align=left> S8*S9 <td> 384  <td> &nbsp;  <td> &nbsp;  <td> 8410.0 <td> 8600.0  <td> &nbsp;  

<tr align=right>
   <td align=left> M12_5 <td> 72  <td> &nbsp;  <td> &nbsp;  <td> 129.0 <td> 129.0  <td> &nbsp; 

<tr align=right>
   <td align=left> M12_6 <td> 84  <td> &nbsp;  <td> &nbsp;  <td> 410.0 <td> 396.0  <td> &nbsp; 

</table>

<p>
Some remarks:
<p>
<ul>
<li>
A blank entry indicates that the corresponding experiment
was not performed.
<li>
For several of the Maple experiments, the experiment was terminated
after 5000 seconds, as indicated in the table.
<li>
It would be futile to attempt to factor any of the other polynomials
in the table using the Zassenhaus method, as the running time
of that method is exponential in <var>r</var>.
<li>
We attempted to factor H2 using the H- algorithm, but after several
hours of computation, the algorithm had not yet terminated.
Using the H+ algorithm, things were much easier:  the hardest part
was to prove the irreducibility of a degree 2048 polynomial,
for which the number of modular factors was 128.
<li>
Note that the power hack strategy can slow things down a bit,
but can also speed things up, sometimes dramatically.
<li>
In the above table, rev(f) denotes the "reverse" of the polynomial f,
i.e., x^{deg(f)}f(x^{-1}).
</ul>


<p>

<center>
<a href="tour-gmp.html"><img src="arrow1.gif" alt="[Previous]" align=bottom></a>
 <a href="tour.html"><img src="arrow2.gif" alt="[Up]" align=bottom></a> 
<a href="tour-roadmap.html"> <img src="arrow3.gif" alt="[Next]" align=bottom></a>
</center>


</body>
</html>

?? 快捷鍵說(shuō)明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美色精品在线视频| 国产午夜亚洲精品理论片色戒| 欧美猛男gaygay网站| 久久久久久日产精品| 亚洲五码中文字幕| 成人免费视频一区二区| 日韩欧美色电影| 亚洲在线观看免费| 成人精品高清在线| 日韩午夜激情av| 一个色在线综合| 成人国产在线观看| 日韩视频在线观看一区二区| 一区二区三区在线视频观看| 国产最新精品免费| 日韩色在线观看| 亚洲一区二区三区小说| 成人黄色电影在线| 久久伊99综合婷婷久久伊| 日本中文字幕一区二区视频| 色婷婷av一区二区三区gif| 久久精品免费在线观看| 日本在线不卡一区| 欧美日韩黄视频| 一区二区久久久| 91在线视频观看| 国产精品久久久久久久久免费桃花| 麻豆精品国产传媒mv男同 | 在线观看日韩av先锋影音电影院| 国产欧美日韩卡一| 精东粉嫩av免费一区二区三区| 欧美日韩国产一区二区三区地区| 亚洲欧美日韩久久精品| 91丝袜美腿高跟国产极品老师 | 99久久久国产精品| 国产丝袜在线精品| 国产精品乡下勾搭老头1| ww亚洲ww在线观看国产| 国产精品一区二区三区乱码| 久久久久久久久久久久久久久99 | 成人小视频在线| 欧美成人精品福利| 美女看a上一区| 欧美成人a视频| 国产一区二区三区久久悠悠色av| 欧美videos中文字幕| 久久99精品国产.久久久久久| 日韩女优视频免费观看| 国产一区二区视频在线| 国产亚洲欧美日韩日本| 91在线观看一区二区| 亚洲三级久久久| 欧美日韩国产高清一区二区 | 日韩精品一区二区在线| 美脚の诱脚舐め脚责91| 久久色成人在线| 成人激情图片网| 亚洲天堂2016| 91精品在线麻豆| 国内精品久久久久影院一蜜桃| 久久久亚洲高清| 日本精品一区二区三区四区的功能| 亚洲午夜久久久久久久久电影网 | 国产精品色哟哟| 99精品久久99久久久久| 亚洲欧美综合另类在线卡通| 91官网在线免费观看| 美女视频黄频大全不卡视频在线播放 | 久久精品久久99精品久久| 久久久久久电影| 91亚洲精品久久久蜜桃| 日本伊人色综合网| 国产亚洲美州欧州综合国| 成人一区二区三区中文字幕| 一二三四社区欧美黄| 日韩一区二区三区三四区视频在线观看| 精品一区二区免费| 伊人婷婷欧美激情| 成人动漫一区二区三区| 亚洲成人免费在线观看| 精品欧美一区二区久久 | 337p粉嫩大胆噜噜噜噜噜91av | 91在线观看美女| 久久99久久精品| 亚洲摸摸操操av| 精品国产乱子伦一区| 欧洲av一区二区嗯嗯嗯啊| 国产在线国偷精品免费看| 亚洲国产精品一区二区久久| 国产午夜亚洲精品不卡| 777色狠狠一区二区三区| 99久久婷婷国产综合精品电影| 免费日韩伦理电影| 亚洲激情自拍视频| 久久久久久久精| 日韩午夜电影av| 成人激情动漫在线观看| 天天影视色香欲综合网老头| 国产精品麻豆99久久久久久| 精品欧美乱码久久久久久1区2区| 欧美体内she精高潮| av中文字幕不卡| 成人一级片网址| 国产精品香蕉一区二区三区| 另类的小说在线视频另类成人小视频在线| 亚洲乱码国产乱码精品精98午夜 | 欧美一级高清大全免费观看| 一本色道久久综合精品竹菊| 国产成人精品亚洲777人妖| 美女视频一区二区| 日本麻豆一区二区三区视频| 亚洲成人综合在线| 午夜精品影院在线观看| 亚洲一区二区三区四区五区中文| 亚洲麻豆国产自偷在线| 国产精品高清亚洲| 1区2区3区国产精品| 国产精品女上位| 欧美韩国一区二区| 国产精品色呦呦| 国产精品二三区| 亚洲欧美另类久久久精品2019| 亚洲精品高清在线观看| 夜夜揉揉日日人人青青一国产精品| 综合欧美亚洲日本| 亚洲另类色综合网站| 亚洲综合网站在线观看| 亚洲大片在线观看| 日韩成人免费电影| 麻豆精品久久久| 国产高清在线观看免费不卡| 国产成人精品综合在线观看 | 欧美日韩dvd在线观看| 欧美精品久久天天躁| 欧美一区二区精美| 精品福利一二区| 欧美激情综合网| 亚洲人成网站精品片在线观看 | 黑人巨大精品欧美一区| 国产99久久久精品| 色综合 综合色| 欧美高清视频www夜色资源网| 在线综合视频播放| 久久久影视传媒| 日韩美女视频一区二区| 午夜精品123| 国产v综合v亚洲欧| 欧美亚洲国产一区在线观看网站| 欧美精品高清视频| 久久网站最新地址| 一区二区三区欧美久久| 青娱乐精品在线视频| 成人av网站大全| 欧美日韩国产一级| 国产三级精品在线| 亚洲成人自拍偷拍| 国产成人综合视频| 欧美日本在线一区| 国产精品水嫩水嫩| 午夜免费久久看| 丰满少妇在线播放bd日韩电影| 欧美撒尿777hd撒尿| 亚洲精品在线观看视频| 玉米视频成人免费看| 国产一区二区精品久久91| 欧美在线观看一区二区| 国产亚洲综合色| 亚洲国产精品久久人人爱| 国产精品一卡二卡在线观看| 欧美午夜片在线看| 中文字幕一区在线观看视频| 日韩电影在线观看电影| 色天天综合久久久久综合片| 久久一二三国产| 日本不卡123| 在线国产电影不卡| 中文字幕五月欧美| 国产一区视频在线看| 884aa四虎影成人精品一区| 亚洲天堂久久久久久久| 国产久卡久卡久卡久卡视频精品| 777a∨成人精品桃花网| 午夜精品一区二区三区电影天堂| 精品少妇一区二区三区日产乱码| 中文字幕第一区| 麻豆成人av在线| 欧美日韩免费视频| 一区二区中文字幕在线| 国产一区二区三区| 欧美成人女星排行榜| 午夜在线电影亚洲一区| 91福利视频久久久久| 中文字幕中文在线不卡住| 国产精品一区免费视频| xf在线a精品一区二区视频网站| 男女激情视频一区| 日韩久久精品一区| 九一九一国产精品| 欧美大片一区二区| 精品在线一区二区三区|