?? lzz_pex.txt
字號:
/**************************************************************************\
MODULE: zz_pEX
SUMMARY:
The class zz_pEX represents polynomials over zz_pE,
and so can be used, for example, for arithmentic in GF(p^n)[X].
However, except where mathematically necessary (e.g., GCD computations),
zz_pE need not be a field.
\**************************************************************************/
#include <NTL/lzz_pE.h>
#include <NTL/vec_lzz_pE.h>
class zz_pEX {
public:
zz_pEX(); // initial value 0
zz_pEX(const zz_pEX& a); // copy
zz_pEX& operator=(const zz_pEX& a); // assignment
zz_pEX& operator=(const zz_pE& a);
zz_pEX& operator=(const zz_p& a);
zz_pEX& operator=(long a);
~zz_pEX(); // destructor
zz_pEX(long i, const zz_pE& c); // initilaize to X^i*c
zz_pEX(long i, const zz_p& c);
zz_pEX(long i, long c);
};
/**************************************************************************\
Comparison
\**************************************************************************/
long operator==(const zz_pEX& a, const zz_pEX& b);
long operator!=(const zz_pEX& a, const zz_pEX& b);
long IsZero(const zz_pEX& a); // test for 0
long IsOne(const zz_pEX& a); // test for 1
// PROMOTIONS: ==, != promote {long,zz_p,zz_pE} to zz_pEX on (a, b).
/**************************************************************************\
Addition
\**************************************************************************/
// operator notation:
zz_pEX operator+(const zz_pEX& a, const zz_pEX& b);
zz_pEX operator-(const zz_pEX& a, const zz_pEX& b);
zz_pEX operator-(const zz_pEX& a);
zz_pEX& operator+=(zz_pEX& x, const zz_pEX& a);
zz_pEX& operator+=(zz_pEX& x, const zz_pE& a);
zz_pEX& operator+=(zz_pEX& x, const zz_p& a);
zz_pEX& operator+=(zz_pEX& x, long a);
zz_pEX& operator++(zz_pEX& x); // prefix
void operator++(zz_pEX& x, int); // postfix
zz_pEX& operator-=(zz_pEX& x, const zz_pEX& a);
zz_pEX& operator-=(zz_pEX& x, const zz_pE& a);
zz_pEX& operator-=(zz_pEX& x, const zz_p& a);
zz_pEX& operator-=(zz_pEX& x, long a);
zz_pEX& operator--(zz_pEX& x); // prefix
void operator--(zz_pEX& x, int); // postfix
// procedural versions:
void add(zz_pEX& x, const zz_pEX& a, const zz_pEX& b); // x = a + b
void sub(zz_pEX& x, const zz_pEX& a, const zz_pEX& b); // x = a - b
void negate(zz_pEX& x, const zz_pEX& a); // x = - a
// PROMOTIONS: +, -, add, sub promote {long,zz_p,zz_pE} to zz_pEX on (a, b).
/**************************************************************************\
Multiplication
\**************************************************************************/
// operator notation:
zz_pEX operator*(const zz_pEX& a, const zz_pEX& b);
zz_pEX& operator*=(zz_pEX& x, const zz_pEX& a);
zz_pEX& operator*=(zz_pEX& x, const zz_pE& a);
zz_pEX& operator*=(zz_pEX& x, const zz_p& a);
zz_pEX& operator*=(zz_pEX& x, long a);
// procedural versions:
void mul(zz_pEX& x, const zz_pEX& a, const zz_pEX& b); // x = a * b
void sqr(zz_pEX& x, const zz_pEX& a); // x = a^2
zz_pEX sqr(const zz_pEX& a);
// PROMOTIONS: *, mul promote {long,zz_p,zz_pE} to zz_pEX on (a, b).
void power(zz_pEX& x, const zz_pEX& a, long e); // x = a^e (e >= 0)
zz_pEX power(const zz_pEX& a, long e);
/**************************************************************************\
Shift Operations
LeftShift by n means multiplication by X^n
RightShift by n means division by X^n
A negative shift amount reverses the direction of the shift.
\**************************************************************************/
// operator notation:
zz_pEX operator<<(const zz_pEX& a, long n);
zz_pEX operator>>(const zz_pEX& a, long n);
zz_pEX& operator<<=(zz_pEX& x, long n);
zz_pEX& operator>>=(zz_pEX& x, long n);
// procedural versions:
void LeftShift(zz_pEX& x, const zz_pEX& a, long n);
zz_pEX LeftShift(const zz_pEX& a, long n);
void RightShift(zz_pEX& x, const zz_pEX& a, long n);
zz_pEX RightShift(const zz_pEX& a, long n);
/**************************************************************************\
Division
\**************************************************************************/
// operator notation:
zz_pEX operator/(const zz_pEX& a, const zz_pEX& b);
zz_pEX operator/(const zz_pEX& a, const zz_pE& b);
zz_pEX operator/(const zz_pEX& a, const zz_p& b);
zz_pEX operator/(const zz_pEX& a, long b);
zz_pEX operator%(const zz_pEX& a, const zz_pEX& b);
zz_pEX& operator/=(zz_pEX& x, const zz_pEX& a);
zz_pEX& operator/=(zz_pEX& x, const zz_pE& a);
zz_pEX& operator/=(zz_pEX& x, const zz_p& a);
zz_pEX& operator/=(zz_pEX& x, long a);
zz_pEX& operator%=(zz_pEX& x, const zz_pEX& a);
// procedural versions:
void DivRem(zz_pEX& q, zz_pEX& r, const zz_pEX& a, const zz_pEX& b);
// q = a/b, r = a%b
void div(zz_pEX& q, const zz_pEX& a, const zz_pEX& b);
void div(zz_pEX& q, const zz_pEX& a, const zz_pE& b);
void div(zz_pEX& q, const zz_pEX& a, const zz_p& b);
void div(zz_pEX& q, const zz_pEX& a, long b);
// q = a/b
void rem(zz_pEX& r, const zz_pEX& a, const zz_pEX& b);
// r = a%b
long divide(zz_pEX& q, const zz_pEX& a, const zz_pEX& b);
// if b | a, sets q = a/b and returns 1; otherwise returns 0
long divide(const zz_pEX& a, const zz_pEX& b);
// if b | a, sets q = a/b and returns 1; otherwise returns 0
/**************************************************************************\
GCD's
These routines are intended for use when zz_pE is a field.
\**************************************************************************/
void GCD(zz_pEX& x, const zz_pEX& a, const zz_pEX& b);
zz_pEX GCD(const zz_pEX& a, const zz_pEX& b);
// x = GCD(a, b), x is always monic (or zero if a==b==0).
void XGCD(zz_pEX& d, zz_pEX& s, zz_pEX& t, const zz_pEX& a, const zz_pEX& b);
// d = gcd(a,b), a s + b t = d
/**************************************************************************\
Input/Output
I/O format:
[a_0 a_1 ... a_n],
represents the polynomial a_0 + a_1*X + ... + a_n*X^n.
On output, all coefficients will be polynomials of degree < zz_pE::degree() and
a_n not zero (the zero polynomial is [ ]). On input, the coefficients
are arbitrary polynomials which are reduced modulo zz_pE::modulus(),
and leading zeros stripped.
\**************************************************************************/
istream& operator>>(istream& s, zz_pEX& x);
ostream& operator<<(ostream& s, const zz_pEX& a);
/**************************************************************************\
Some utility routines
\**************************************************************************/
long deg(const zz_pEX& a); // return deg(a); deg(0) == -1.
const zz_pE& coeff(const zz_pEX& a, long i);
// returns a read-only reference to the coefficient of X^i, or zero if
// i not in range
const zz_pE& LeadCoeff(const zz_pEX& a);
// read-only reference to leading term of a, or zero if a == 0
const zz_pE& ConstTerm(const zz_pEX& a);
// read-only reference to constant term of a, or zero if a == 0
void SetCoeff(zz_pEX& x, long i, const zz_pE& a);
void SetCoeff(zz_pEX& x, long i, const zz_p& a);
void SetCoeff(zz_pEX& x, long i, long a);
// makes coefficient of X^i equal to a; error is raised if i < 0
void SetCoeff(zz_pEX& x, long i);
// makes coefficient of X^i equal to 1; error is raised if i < 0
void SetX(zz_pEX& x); // x is set to the monomial X
long IsX(const zz_pEX& a); // test if x = X
void diff(zz_pEX& x, const zz_pEX& a); // x = derivative of a
zz_pEX diff(const zz_pEX& a);
void MakeMonic(zz_pEX& x);
// if x != 0 makes x into its monic associate; LeadCoeff(x) must be
// invertible in this case
void reverse(zz_pEX& x, const zz_pEX& a, long hi);
zz_pEX reverse(const zz_pEX& a, long hi);
void reverse(zz_pEX& x, const zz_pEX& a);
zz_pEX reverse(const zz_pEX& a);
// x = reverse of a[0]..a[hi] (hi >= -1);
// hi defaults to deg(a) in second version
void VectorCopy(vec_zz_pE& x, const zz_pEX& a, long n);
vec_zz_pE VectorCopy(const zz_pEX& a, long n);
// x = copy of coefficient vector of a of length exactly n.
// input is truncated or padded with zeroes as appropriate.
/**************************************************************************\
Random Polynomials
\**************************************************************************/
void random(zz_pEX& x, long n);
zz_pEX random_zz_pEX(long n);
// x = random polynomial of degree < n
/**************************************************************************\
Polynomial Evaluation and related problems
\**************************************************************************/
void BuildFromRoots(zz_pEX& x, const vec_zz_pE& a);
zz_pEX BuildFromRoots(const vec_zz_pE& a);
// computes the polynomial (X-a[0]) ... (X-a[n-1]), where n = a.length()
void eval(zz_pE& b, const zz_pEX& f, const zz_pE& a);
zz_pE eval(const zz_pEX& f, const zz_pE& a);
// b = f(a)
void eval(zz_pE& b, const zz_pX& f, const zz_pE& a);
zz_pE eval(const zz_pEX& f, const zz_pE& a);
// b = f(a); uses ModComp algorithm for zz_pX
void eval(vec_zz_pE& b, const zz_pEX& f, const vec_zz_pE& a);
vec_zz_pE eval(const zz_pEX& f, const vec_zz_pE& a);
// b.SetLength(a.length()); b[i] = f(a[i]) for 0 <= i < a.length()
void interpolate(zz_pEX& f, const vec_zz_pE& a, const vec_zz_pE& b);
zz_pEX interpolate(const vec_zz_pE& a, const vec_zz_pE& b);
// interpolates the polynomial f satisfying f(a[i]) = b[i].
/**************************************************************************\
Arithmetic mod X^n
Required: n >= 0; otherwise, an error is raised.
\**************************************************************************/
void trunc(zz_pEX& x, const zz_pEX& a, long n); // x = a % X^n
zz_pEX trunc(const zz_pEX& a, long n);
void MulTrunc(zz_pEX& x, const zz_pEX& a, const zz_pEX& b, long n);
zz_pEX MulTrunc(const zz_pEX& a, const zz_pEX& b, long n);
// x = a * b % X^n
void SqrTrunc(zz_pEX& x, const zz_pEX& a, long n);
zz_pEX SqrTrunc(const zz_pEX& a, long n);
// x = a^2 % X^n
void InvTrunc(zz_pEX& x, const zz_pEX& a, long n);
zz_pEX InvTrunc(zz_pEX& x, const zz_pEX& a, long n);
// computes x = a^{-1} % X^m. Must have ConstTerm(a) invertible.
/**************************************************************************\
Modular Arithmetic (without pre-conditioning)
Arithmetic mod f.
All inputs and outputs are polynomials of degree less than deg(f), and
deg(f) > 0.
NOTE: if you want to do many computations with a fixed f, use the
zz_pEXModulus data structure and associated routines below for better
performance.
\**************************************************************************/
void MulMod(zz_pEX& x, const zz_pEX& a, const zz_pEX& b, const zz_pEX& f);
zz_pEX MulMod(const zz_pEX& a, const zz_pEX& b, const zz_pEX& f);
// x = (a * b) % f
void SqrMod(zz_pEX& x, const zz_pEX& a, const zz_pEX& f);
zz_pEX SqrMod(const zz_pEX& a, const zz_pEX& f);
// x = a^2 % f
void MulByXMod(zz_pEX& x, const zz_pEX& a, const zz_pEX& f);
zz_pEX MulByXMod(const zz_pEX& a, const zz_pEX& f);
// x = (a * X) mod f
void InvMod(zz_pEX& x, const zz_pEX& a, const zz_pEX& f);
zz_pEX InvMod(const zz_pEX& a, const zz_pEX& f);
// x = a^{-1} % f, error is a is not invertible
long InvModStatus(zz_pEX& x, const zz_pEX& a, const zz_pEX& f);
// if (a, f) = 1, returns 0 and sets x = a^{-1} % f; otherwise,
// returns 1 and sets x = (a, f)
/**************************************************************************\
Modular Arithmetic with Pre-Conditioning
If you need to do a lot of arithmetic modulo a fixed f, build
zz_pEXModulus F for f. This pre-computes information about f that
speeds up subsequent computations.
As an example, the following routine the product modulo f of a vector
of polynomials.
#include <NTL/lzz_pEX.h>
void product(zz_pEX& x, const vec_zz_pEX& v, const zz_pEX& f)
{
zz_pEXModulus F(f);
zz_pEX res;
res = 1;
long i;
for (i = 0; i < v.length(); i++)
MulMod(res, res, v[i], F);
x = res;
}
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -