?? zz_px.txt
字號:
/**************************************************************************\
MODULE: ZZ_pX
SUMMARY:
The class ZZ_pX implements polynomial arithmetic modulo p.
Polynomial arithmetic is implemented using the FFT, combined with the
Chinese Remainder Theorem. A more detailed description of the
techniques used here can be found in [Shoup, J. Symbolic
Comp. 20:363-397, 1995].
Small degree polynomials are multiplied either with classical
or Karatsuba algorithms.
\**************************************************************************/
#include <NTL/ZZ_p.h>
#include <NTL/vec_ZZ_p.h>
class ZZ_pX {
public:
ZZ_pX(); // initialize to 0
ZZ_pX(const ZZ_pX& a); // copy constructor
ZZ_pX& operator=(const ZZ_pX& a); // assignment
ZZ_pX& operator=(const ZZ_p& a); // assignment
ZZ_pX& operator=(const long a); // assignment
ZZ_pX(long i, const ZZ_p& c); // initialize to X^i*c
ZZ_pX(long i, long c);
~ZZ_pX(); // destructor
};
/**************************************************************************\
Comparison
\**************************************************************************/
long operator==(const ZZ_pX& a, const ZZ_pX& b);
long operator!=(const ZZ_pX& a, const ZZ_pX& b);
// PROMOTIONS: operators ==, != promote {long, ZZ_p} to ZZ_pX on (a, b).
long IsZero(const ZZ_pX& a); // test for 0
long IsOne(const ZZ_pX& a); // test for 1
/**************************************************************************\
Addition
\**************************************************************************/
// operator notation:
ZZ_pX operator+(const ZZ_pX& a, const ZZ_pX& b);
ZZ_pX operator-(const ZZ_pX& a, const ZZ_pX& b);
ZZ_pX operator-(const ZZ_pX& a); // unary -
ZZ_pX& operator+=(ZZ_pX& x, const ZZ_pX& a);
ZZ_pX& operator+=(ZZ_pX& x, const ZZ_p& a);
ZZ_pX& operator+=(ZZ_pX& x, long a);
ZZ_pX& operator-=(ZZ_pX& x, const ZZ_pX& a);
ZZ_pX& operator-=(ZZ_pX& x, const ZZ_p& a);
ZZ_pX& operator-=(ZZ_pX& x, long a);
ZZ_pX& operator++(ZZ_pX& x); // prefix
void operator++(ZZ_pX& x, int); // postfix
ZZ_pX& operator--(ZZ_pX& x); // prefix
void operator--(ZZ_pX& x, int); // postfix
// procedural versions:
void add(ZZ_pX& x, const ZZ_pX& a, const ZZ_pX& b); // x = a + b
void sub(ZZ_pX& x, const ZZ_pX& a, const ZZ_pX& b); // x = a - b
void negate(ZZ_pX& x, const ZZ_pX& a); // x = -a
// PROMOTIONS: binary +, - and procedures add, sub promote
// {long, ZZ_p} to ZZ_pX on (a, b).
/**************************************************************************\
Multiplication
\**************************************************************************/
// operator notation:
ZZ_pX operator*(const ZZ_pX& a, const ZZ_pX& b);
ZZ_pX& operator*=(ZZ_pX& x, const ZZ_pX& a);
ZZ_pX& operator*=(ZZ_pX& x, const ZZ_p& a);
ZZ_pX& operator*=(ZZ_pX& x, long a);
// procedural versions:
void mul(ZZ_pX& x, const ZZ_pX& a, const ZZ_pX& b); // x = a * b
void sqr(ZZ_pX& x, const ZZ_pX& a); // x = a^2
ZZ_pX sqr(const ZZ_pX& a);
// PROMOTIONS: operator * and procedure mul promote {long, ZZ_p} to ZZ_pX
// on (a, b).
void power(ZZ_pX& x, const ZZ_pX& a, long e); // x = a^e (e >= 0)
ZZ_pX power(const ZZ_pX& a, long e);
/**************************************************************************\
Shift Operations
LeftShift by n means multiplication by X^n
RightShift by n means division by X^n
A negative shift amount reverses the direction of the shift.
\**************************************************************************/
// operator notation:
ZZ_pX operator<<(const ZZ_pX& a, long n);
ZZ_pX operator>>(const ZZ_pX& a, long n);
ZZ_pX& operator<<=(ZZ_pX& x, long n);
ZZ_pX& operator>>=(ZZ_pX& x, long n);
// procedural versions:
void LeftShift(ZZ_pX& x, const ZZ_pX& a, long n);
ZZ_pX LeftShift(const ZZ_pX& a, long n);
void RightShift(ZZ_pX& x, const ZZ_pX& a, long n);
ZZ_pX RightShift(const ZZ_pX& a, long n);
/**************************************************************************\
Division
\**************************************************************************/
// operator notation:
ZZ_pX operator/(const ZZ_pX& a, const ZZ_pX& b);
ZZ_pX operator/(const ZZ_pX& a, const ZZ_p& b);
ZZ_pX operator/(const ZZ_pX& a, long b);
ZZ_pX& operator/=(ZZ_pX& x, const ZZ_pX& b);
ZZ_pX& operator/=(ZZ_pX& x, const ZZ_p& b);
ZZ_pX& operator/=(ZZ_pX& x, long b);
ZZ_pX operator%(const ZZ_pX& a, const ZZ_pX& b);
ZZ_pX& operator%=(ZZ_pX& x, const ZZ_pX& b);
// procedural versions:
void DivRem(ZZ_pX& q, ZZ_pX& r, const ZZ_pX& a, const ZZ_pX& b);
// q = a/b, r = a%b
void div(ZZ_pX& q, const ZZ_pX& a, const ZZ_pX& b);
void div(ZZ_pX& q, const ZZ_pX& a, const ZZ_p& b);
void div(ZZ_pX& q, const ZZ_pX& a, long b);
// q = a/b
void rem(ZZ_pX& r, const ZZ_pX& a, const ZZ_pX& b);
// r = a%b
long divide(ZZ_pX& q, const ZZ_pX& a, const ZZ_pX& b);
// if b | a, sets q = a/b and returns 1; otherwise returns 0
long divide(const ZZ_pX& a, const ZZ_pX& b);
// if b | a, sets q = a/b and returns 1; otherwise returns 0
/**************************************************************************\
GCD's
These routines are intended for use when p is prime.
\**************************************************************************/
void GCD(ZZ_pX& x, const ZZ_pX& a, const ZZ_pX& b);
ZZ_pX GCD(const ZZ_pX& a, const ZZ_pX& b);
// x = GCD(a, b), x is always monic (or zero if a==b==0).
void XGCD(ZZ_pX& d, ZZ_pX& s, ZZ_pX& t, const ZZ_pX& a, const ZZ_pX& b);
// d = gcd(a,b), a s + b t = d
// NOTE: A classical algorithm is used, switching over to a
// "half-GCD" algorithm for large degree
/**************************************************************************\
Input/Output
I/O format:
[a_0 a_1 ... a_n],
represents the polynomial a_0 + a_1*X + ... + a_n*X^n.
On output, all coefficients will be integers between 0 and p-1, and
a_n not zero (the zero polynomial is [ ]). On input, the coefficients
are arbitrary integers which are reduced modulo p, and leading zeros
stripped.
\**************************************************************************/
istream& operator>>(istream& s, ZZ_pX& x);
ostream& operator<<(ostream& s, const ZZ_pX& a);
/**************************************************************************\
Some utility routines
\**************************************************************************/
long deg(const ZZ_pX& a); // return deg(a); deg(0) == -1.
const ZZ_p& coeff(const ZZ_pX& a, long i);
// returns a read-only reference to the coefficient of X^i, or zero if
// i not in range
const ZZ_p& LeadCoeff(const ZZ_pX& a);
// read-only reference to leading term of a, or zero if a == 0
const ZZ_p& ConstTerm(const ZZ_pX& a);
// read-only reference to constant term of a, or zero if a == 0
void SetCoeff(ZZ_pX& x, long i, const ZZ_p& a);
void SetCoeff(ZZ_pX& x, long i, long a);
// makes coefficient of X^i equal to a; error is raised if i < 0
void SetCoeff(ZZ_pX& x, long i);
// makes coefficient of X^i equal to 1; error is raised if i < 0
void SetX(ZZ_pX& x); // x is set to the monomial X
long IsX(const ZZ_pX& a); // test if x = X
void diff(ZZ_pX& x, const ZZ_pX& a); // x = derivative of a
ZZ_pX diff(const ZZ_pX& a);
void MakeMonic(ZZ_pX& x);
// if x != 0 makes x into its monic associate; LeadCoeff(x) must be
// invertible in this case.
void reverse(ZZ_pX& x, const ZZ_pX& a, long hi);
ZZ_pX reverse(const ZZ_pX& a, long hi);
void reverse(ZZ_pX& x, const ZZ_pX& a);
ZZ_pX reverse(const ZZ_pX& a);
// x = reverse of a[0]..a[hi] (hi >= -1);
// hi defaults to deg(a) in second version
void VectorCopy(vec_ZZ_p& x, const ZZ_pX& a, long n);
vec_ZZ_p VectorCopy(const ZZ_pX& a, long n);
// x = copy of coefficient vector of a of length exactly n.
// input is truncated or padded with zeroes as appropriate.
/**************************************************************************\
Random Polynomials
\**************************************************************************/
void random(ZZ_pX& x, long n);
ZZ_pX random_ZZ_pX(long n);
// generate a random polynomial of degree < n
/**************************************************************************\
Polynomial Evaluation and related problems
\**************************************************************************/
void BuildFromRoots(ZZ_pX& x, const vec_ZZ_p& a);
ZZ_pX BuildFromRoots(const vec_ZZ_p& a);
// computes the polynomial (X-a[0]) ... (X-a[n-1]), where n = a.length()
void eval(ZZ_p& b, const ZZ_pX& f, const ZZ_p& a);
ZZ_p eval(const ZZ_pX& f, const ZZ_p& a);
// b = f(a)
void eval(vec_ZZ_p& b, const ZZ_pX& f, const vec_ZZ_p& a);
vec_ZZ_p eval(const ZZ_pX& f, const vec_ZZ_p& a);
// b.SetLength(a.length()). b[i] = f(a[i]) for 0 <= i < a.length()
void interpolate(ZZ_pX& f, const vec_ZZ_p& a, const vec_ZZ_p& b);
ZZ_pX interpolate(const vec_ZZ_p& a, const vec_ZZ_p& b);
// interpolates the polynomial f satisfying f(a[i]) = b[i]. p should
// be prime.
/**************************************************************************\
Arithmetic mod X^n
All routines require n >= 0, otherwise an error is raised.
\**************************************************************************/
void trunc(ZZ_pX& x, const ZZ_pX& a, long n); // x = a % X^n
ZZ_pX trunc(const ZZ_pX& a, long n);
void MulTrunc(ZZ_pX& x, const ZZ_pX& a, const ZZ_pX& b, long n);
ZZ_pX MulTrunc(const ZZ_pX& a, const ZZ_pX& b, long n);
// x = a * b % X^n
void SqrTrunc(ZZ_pX& x, const ZZ_pX& a, long n);
ZZ_pX SqrTrunc(const ZZ_pX& a, long n);
// x = a^2 % X^n
void InvTrunc(ZZ_pX& x, const ZZ_pX& a, long n);
ZZ_pX InvTrunc(const ZZ_pX& a, long n);
// computes x = a^{-1} % X^m. Must have ConstTerm(a) invertible.
/**************************************************************************\
Modular Arithmetic (without pre-conditioning)
Arithmetic mod f.
All inputs and outputs are polynomials of degree less than deg(f), and
deg(f) > 0.
NOTE: if you want to do many computations with a fixed f, use the
ZZ_pXModulus data structure and associated routines below for better
performance.
\**************************************************************************/
void MulMod(ZZ_pX& x, const ZZ_pX& a, const ZZ_pX& b, const ZZ_pX& f);
ZZ_pX MulMod(const ZZ_pX& a, const ZZ_pX& b, const ZZ_pX& f);
// x = (a * b) % f
void SqrMod(ZZ_pX& x, const ZZ_pX& a, const ZZ_pX& f);
ZZ_pX SqrMod(const ZZ_pX& a, const ZZ_pX& f);
// x = a^2 % f
void MulByXMod(ZZ_pX& x, const ZZ_pX& a, const ZZ_pX& f);
ZZ_pX MulByXMod(const ZZ_pX& a, const ZZ_pX& f);
// x = (a * X) mod f
void InvMod(ZZ_pX& x, const ZZ_pX& a, const ZZ_pX& f);
ZZ_pX InvMod(const ZZ_pX& a, const ZZ_pX& f);
// x = a^{-1} % f, error is a is not invertible
long InvModStatus(ZZ_pX& x, const ZZ_pX& a, const ZZ_pX& f);
// if (a, f) = 1, returns 0 and sets x = a^{-1} % f; otherwise,
// returns 1 and sets x = (a, f)
// for modular exponentiation, see below
/**************************************************************************\
Modular Arithmetic with Pre-Conditioning
If you need to do a lot of arithmetic modulo a fixed f, build a
ZZ_pXModulus F for f. This pre-computes information about f that
speeds up subsequent computations.
It is required that deg(f) > 0 and that LeadCoeff(f) is invertible.
As an example, the following routine computes the product modulo f of a vector
of polynomials.
#include <NTL/ZZ_pX.h>
void product(ZZ_pX& x, const vec_ZZ_pX& v, const ZZ_pX& f)
{
ZZ_pXModulus F(f);
ZZ_pX res;
res = 1;
long i;
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -