?? zz_px.txt
字號:
for (i = 0; i < v.length(); i++)
MulMod(res, res, v[i], F);
x = res;
}
Note that automatic conversions are provided so that a ZZ_pX can
be used wherever a ZZ_pXModulus is required, and a ZZ_pXModulus
can be used wherever a ZZ_pX is required.
\**************************************************************************/
class ZZ_pXModulus {
public:
ZZ_pXModulus(); // initially in an unusable state
ZZ_pXModulus(const ZZ_pXModulus&); // copy
ZZ_pXModulus& operator=(const ZZ_pXModulus&); // assignment
~ZZ_pXModulus();
ZZ_pXModulus(const ZZ_pX& f); // initialize with f, deg(f) > 0
operator const ZZ_pX& () const;
// read-only access to f, implicit conversion operator
const ZZ_pX& val() const;
// read-only access to f, explicit notation
};
void build(ZZ_pXModulus& F, const ZZ_pX& f);
// pre-computes information about f and stores it in F.
// Note that the declaration ZZ_pXModulus F(f) is equivalent to
// ZZ_pXModulus F; build(F, f).
// In the following, f refers to the polynomial f supplied to the
// build routine, and n = deg(f).
long deg(const ZZ_pXModulus& F); // return n=deg(f)
void MulMod(ZZ_pX& x, const ZZ_pX& a, const ZZ_pX& b, const ZZ_pXModulus& F);
ZZ_pX MulMod(const ZZ_pX& a, const ZZ_pX& b, const ZZ_pXModulus& F);
// x = (a * b) % f; deg(a), deg(b) < n
void SqrMod(ZZ_pX& x, const ZZ_pX& a, const ZZ_pXModulus& F);
ZZ_pX SqrMod(const ZZ_pX& a, const ZZ_pXModulus& F);
// x = a^2 % f; deg(a) < n
void PowerMod(ZZ_pX& x, const ZZ_pX& a, const ZZ& e, const ZZ_pXModulus& F);
ZZ_pX PowerMod(const ZZ_pX& a, const ZZ& e, const ZZ_pXModulus& F);
void PowerMod(ZZ_pX& x, const ZZ_pX& a, long e, const ZZ_pXModulus& F);
ZZ_pX PowerMod(const ZZ_pX& a, long e, const ZZ_pXModulus& F);
// x = a^e % f; deg(a) < n (e may be negative)
void PowerXMod(ZZ_pX& x, const ZZ& e, const ZZ_pXModulus& F);
ZZ_pX PowerXMod(const ZZ& e, const ZZ_pXModulus& F);
void PowerXMod(ZZ_pX& x, long e, const ZZ_pXModulus& F);
ZZ_pX PowerXMod(long e, const ZZ_pXModulus& F);
// x = X^e % f (e may be negative)
void PowerXPlusAMod(ZZ_pX& x, const ZZ_p& a, const ZZ& e,
const ZZ_pXModulus& F);
ZZ_pX PowerXPlusAMod(const ZZ_p& a, const ZZ& e,
const ZZ_pXModulus& F);
void PowerXPlusAMod(ZZ_pX& x, const ZZ_p& a, long e,
const ZZ_pXModulus& F);
ZZ_pX PowerXPlusAMod(const ZZ_p& a, long e,
const ZZ_pXModulus& F);
// x = (X + a)^e % f (e may be negative)
void rem(ZZ_pX& x, const ZZ_pX& a, const ZZ_pXModulus& F);
// x = a % f
void DivRem(ZZ_pX& q, ZZ_pX& r, const ZZ_pX& a, const ZZ_pXModulus& F);
// q = a/f, r = a%f
void div(ZZ_pX& q, const ZZ_pX& a, const ZZ_pXModulus& F);
// q = a/f
// operator notation:
ZZ_pX operator/(const ZZ_pX& a, const ZZ_pXModulus& F);
ZZ_pX operator%(const ZZ_pX& a, const ZZ_pXModulus& F);
ZZ_pX& operator/=(ZZ_pX& x, const ZZ_pXModulus& F);
ZZ_pX& operator%=(ZZ_pX& x, const ZZ_pXModulus& F);
/**************************************************************************\
More Pre-Conditioning
If you need to compute a * b % f for a fixed b, but for many a's, it
is much more efficient to first build a ZZ_pXMultiplier B for b, and
then use the MulMod routine below.
Here is an example that multiplies each element of a vector by a fixed
polynomial modulo f.
#include <NTL/ZZ_pX.h>
void mul(vec_ZZ_pX& v, const ZZ_pX& b, const ZZ_pX& f)
{
ZZ_pXModulus F(f);
ZZ_pXMultiplier B(b, F);
long i;
for (i = 0; i < v.length(); i++)
MulMod(v[i], v[i], B, F);
}
\**************************************************************************/
class ZZ_pXMultiplier {
public:
ZZ_pXMultiplier(); // initially zero
ZZ_pXMultiplier(const ZZ_pX& b, const ZZ_pXModulus& F);
// initializes with b mod F, where deg(b) < deg(F)
ZZ_pXMultiplier(const ZZ_pXMultiplier&); // copy
ZZ_pXMultiplier& operator=(const ZZ_pXMultiplier&); // assignment
~ZZ_pXMultiplier();
const ZZ_pX& val() const; // read-only access to b
};
void build(ZZ_pXMultiplier& B, const ZZ_pX& b, const ZZ_pXModulus& F);
// pre-computes information about b and stores it in B; deg(b) <
// deg(F)
void MulMod(ZZ_pX& x, const ZZ_pX& a, const ZZ_pXMultiplier& B,
const ZZ_pXModulus& F);
// x = (a * b) % F; deg(a) < deg(F)
/**************************************************************************\
vectors of ZZ_pX's
\**************************************************************************/
NTL_vector_decl(ZZ_pX,vec_ZZ_pX)
// vec_ZZ_pX
NTL_eq_vector_decl(ZZ_pX,vec_ZZ_pX)
// == and !=
NTL_io_vector_decl(ZZ_pX,vec_ZZ_pX)
// I/O operators
/**************************************************************************\
Modular Composition
Modular composition is the problem of computing g(h) mod f for
polynomials f, g, and h.
The algorithm employed is that of Brent & Kung (Fast algorithms for
manipulating formal power series, JACM 25:581-595, 1978), which uses
O(n^{1/2}) modular polynomial multiplications, and O(n^2) scalar
operations.
\**************************************************************************/
void CompMod(ZZ_pX& x, const ZZ_pX& g, const ZZ_pX& h, const ZZ_pXModulus& F);
ZZ_pX CompMod(const ZZ_pX& g, const ZZ_pX& h,
const ZZ_pXModulus& F);
// x = g(h) mod f; deg(h) < n
void Comp2Mod(ZZ_pX& x1, ZZ_pX& x2, const ZZ_pX& g1, const ZZ_pX& g2,
const ZZ_pX& h, const ZZ_pXModulus& F);
// xi = gi(h) mod f (i=1,2); deg(h) < n.
void Comp3Mod(ZZ_pX& x1, ZZ_pX& x2, ZZ_pX& x3,
const ZZ_pX& g1, const ZZ_pX& g2, const ZZ_pX& g3,
const ZZ_pX& h, const ZZ_pXModulus& F);
// xi = gi(h) mod f (i=1..3); deg(h) < n.
/**************************************************************************\
Composition with Pre-Conditioning
If a single h is going to be used with many g's then you should build
a ZZ_pXArgument for h, and then use the compose routine below. The
routine build computes and stores h, h^2, ..., h^m mod f. After this
pre-computation, composing a polynomial of degree roughly n with h
takes n/m multiplies mod f, plus n^2 scalar multiplies. Thus,
increasing m increases the space requirement and the pre-computation
time, but reduces the composition time.
\**************************************************************************/
struct ZZ_pXArgument {
vec_ZZ_pX H;
};
void build(ZZ_pXArgument& H, const ZZ_pX& h, const ZZ_pXModulus& F, long m);
// Pre-Computes information about h. m > 0, deg(h) < n.
void CompMod(ZZ_pX& x, const ZZ_pX& g, const ZZ_pXArgument& H,
const ZZ_pXModulus& F);
ZZ_pX CompMod(const ZZ_pX& g, const ZZ_pXArgument& H,
const ZZ_pXModulus& F);
extern long ZZ_pXArgBound;
// Initially 0. If this is set to a value greater than zero, then
// composition routines will allocate a table of no than about
// ZZ_pXArgBound KB. Setting this value affects all compose routines
// and the power projection and minimal polynomial routines below,
// and indirectly affects many routines in ZZ_pXFactoring.
/**************************************************************************\
power projection routines
\**************************************************************************/
void project(ZZ_p& x, const ZZ_pVector& a, const ZZ_pX& b);
ZZ_p project(const ZZ_pVector& a, const ZZ_pX& b);
// x = inner product of a with coefficient vector of b
void ProjectPowers(vec_ZZ_p& x, const vec_ZZ_p& a, long k,
const ZZ_pX& h, const ZZ_pXModulus& F);
vec_ZZ_p ProjectPowers(const vec_ZZ_p& a, long k,
const ZZ_pX& h, const ZZ_pXModulus& F);
// Computes the vector
// project(a, 1), project(a, h), ..., project(a, h^{k-1} % f).
// This operation is the "transpose" of the modular composition operation.
void ProjectPowers(vec_ZZ_p& x, const vec_ZZ_p& a, long k,
const ZZ_pXArgument& H, const ZZ_pXModulus& F);
vec_ZZ_p ProjectPowers(const vec_ZZ_p& a, long k,
const ZZ_pXArgument& H, const ZZ_pXModulus& F);
// same as above, but uses a pre-computed ZZ_pXArgument
void UpdateMap(vec_ZZ_p& x, const vec_ZZ_p& a,
const ZZ_pXMultiplier& B, const ZZ_pXModulus& F);
vec_ZZ_p UpdateMap(const vec_ZZ_p& a,
const ZZ_pXMultiplier& B, const ZZ_pXModulus& F);
// Computes the vector
// project(a, b), project(a, (b*X)%f), ..., project(a, (b*X^{n-1})%f)
// Restriction: must have a.length() <= deg(F).
// This is "transposed" MulMod by B.
// Input may have "high order" zeroes stripped.
// Output will always have high order zeroes stripped.
/**************************************************************************\
Minimum Polynomials
These routines should be used with prime p.
All of these routines implement the algorithm from [Shoup, J. Symbolic
Comp. 17:371-391, 1994] and [Shoup, J. Symbolic Comp. 20:363-397,
1995], based on transposed modular composition and the
Berlekamp/Massey algorithm.
\**************************************************************************/
void MinPolySeq(ZZ_pX& h, const vec_ZZ_p& a, long m);
ZZ_pX MinPolySeq(const vec_ZZ_p& a, long m);
// computes the minimum polynomial of a linealy generated sequence; m
// is a bound on the degree of the polynomial; required: a.length() >=
// 2*m
void ProbMinPolyMod(ZZ_pX& h, const ZZ_pX& g, const ZZ_pXModulus& F, long m);
ZZ_pX ProbMinPolyMod(const ZZ_pX& g, const ZZ_pXModulus& F, long m);
void ProbMinPolyMod(ZZ_pX& h, const ZZ_pX& g, const ZZ_pXModulus& F);
ZZ_pX ProbMinPolyMod(const ZZ_pX& g, const ZZ_pXModulus& F);
// computes the monic minimal polynomial if (g mod f). m = a bound on
// the degree of the minimal polynomial; in the second version, this
// argument defaults to n. The algorithm is probabilistic, always
// returns a divisor of the minimal polynomial, and returns a proper
// divisor with probability at most m/p.
void MinPolyMod(ZZ_pX& h, const ZZ_pX& g, const ZZ_pXModulus& F, long m);
ZZ_pX MinPolyMod(const ZZ_pX& g, const ZZ_pXModulus& F, long m);
void MinPolyMod(ZZ_pX& h, const ZZ_pX& g, const ZZ_pXModulus& F);
ZZ_pX MinPolyMod(const ZZ_pX& g, const ZZ_pXModulus& F);
// same as above, but guarantees that result is correct
void IrredPolyMod(ZZ_pX& h, const ZZ_pX& g, const ZZ_pXModulus& F, long m);
ZZ_pX IrredPolyMod(const ZZ_pX& g, const ZZ_pXModulus& F, long m);
void IrredPolyMod(ZZ_pX& h, const ZZ_pX& g, const ZZ_pXModulus& F);
ZZ_pX IrredPolyMod(const ZZ_pX& g, const ZZ_pXModulus& F);
// same as above, but assumes that f is irreducible, or at least that
// the minimal poly of g is itself irreducible. The algorithm is
// deterministic (and is always correct).
/**************************************************************************\
Traces, norms, resultants
These routines should be used with prime p.
\**************************************************************************/
void TraceMod(ZZ_p& x, const ZZ_pX& a, const ZZ_pXModulus& F);
ZZ_p TraceMod(const ZZ_pX& a, const ZZ_pXModulus& F);
void TraceMod(ZZ_p& x, const ZZ_pX& a, const ZZ_pX& f);
ZZ_p TraceMod(const ZZ_pX& a, const ZZ_pXModulus& f);
// x = Trace(a mod f); deg(a) < deg(f)
void TraceVec(vec_ZZ_p& S, const ZZ_pX& f);
vec_ZZ_p TraceVec(const ZZ_pX& f);
// S[i] = Trace(X^i mod f), i = 0..deg(f)-1; 0 < deg(f)
// The above trace routines implement the asymptotically fast trace
// algorithm from [von zur Gathen and Shoup, Computational Complexity,
// 1992].
void NormMod(ZZ_p& x, const ZZ_pX& a, const ZZ_pX& f);
ZZ_p NormMod(const ZZ_pX& a, const ZZ_pX& f);
// x = Norm(a mod f); 0 < deg(f), deg(a) < deg(f)
void resultant(ZZ_p& x, const ZZ_pX& a, const ZZ_pX& b);
ZZ_p resultant(const ZZ_pX& a, const ZZ_pX& b);
// x = resultant(a, b)
void CharPolyMod(ZZ_pX& g, const ZZ_pX& a, const ZZ_pX& f);
ZZ_pX CharPolyMod(const ZZ_pX& a, const ZZ_pX& f);
// g = charcteristic polynomial of (a mod f); 0 < deg(f), deg(g) <
// deg(f); this routine works for arbitrary f; if f is irreducible,
// it is faster to use the IrredPolyMod routine, and then exponentiate
// if necessary (since in this case the CharPoly is just a power of
// the IrredPoly).
/**************************************************************************\
Miscellany
A ZZ_pX f is represented as a vec_ZZ_p, which can be accessed as
f.rep. The constant term is f.rep[0] and the leading coefficient is
f.rep[f.rep.length()-1], except if f is zero, in which case
f.rep.length() == 0. Note that the leading coefficient is always
nonzero (unless f is zero). One can freely access and modify f.rep,
but one should always ensure that the leading coefficient is nonzero,
which can be done by invoking f.normalize().
\**************************************************************************/
void clear(ZZ_pX& x) // x = 0
void set(ZZ_pX& x); // x = 1
void ZZ_pX::normalize();
// f.normalize() strips leading zeros from f.rep.
void ZZ_pX::SetMaxLength(long n);
// f.SetMaxLength(n) pre-allocate spaces for n coefficients. The
// polynomial that f represents is unchanged.
void ZZ_pX::kill();
// f.kill() sets f to 0 and frees all memory held by f; Equivalent to
// f.rep.kill().
ZZ_pX::ZZ_pX(INIT_SIZE_TYPE, long n);
// ZZ_pX(INIT_SIZE, n) initializes to zero, but space is pre-allocated
// for n coefficients
static const ZZ_pX& ZZ_pX::zero();
// ZZ_pX::zero() is a read-only reference to 0
void swap(ZZ_pX& x, ZZ_pX& y);
// swap x and y (via "pointer swapping")
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -