?? lzz_px.txt
字號(hào):
/**************************************************************************\
MODULE: zz_pX
SUMMARY:
The class zz_pX implements polynomial arithmetic modulo p.
Polynomial arithmetic is implemented using a combination of classical
routines, Karatsuba, and FFT.
\**************************************************************************/
#include "zz_p.h"
#include "vec_zz_p.h"
class zz_pX {
public:
zz_pX(); // initial value 0
zz_pX(const zz_pX& a); // copy
zz_pX& operator=(const zz_pX& a); // assignment
zz_pX& operator=(zz_p a);
zz_pX& operator=(long a);
~zz_pX(); // destructor
zz_pX(long i, zz_p c); // initialize to X^i*c
zz_pX(long i, long c);
};
/**************************************************************************\
Comparison
\**************************************************************************/
long operator==(const zz_pX& a, const zz_pX& b);
long operator!=(const zz_pX& a, const zz_pX& b);
long IsZero(const zz_pX& a); // test for 0
long IsOne(const zz_pX& a); // test for 1
// PROMOTIONS: operators ==, != promote {long, zz_p} to zz_pX on (a, b)
/**************************************************************************\
Addition
\**************************************************************************/
// operator notation:
zz_pX operator+(const zz_pX& a, const zz_pX& b);
zz_pX operator-(const zz_pX& a, const zz_pX& b);
zz_pX operator-(const zz_pX& a); // unary -
zz_pX& operator+=(zz_pX& x, const zz_pX& a);
zz_pX& operator+=(zz_pX& x, zz_p a);
zz_pX& operator+=(zz_pX& x, long a);
zz_pX& operator-=(zz_pX& x, const zz_pX& a);
zz_pX& operator-=(zz_pX& x, zz_p a);
zz_pX& operator-=(zz_pX& x, long a);
zz_pX& operator++(zz_pX& x); // prefix
void operator++(zz_pX& x, int); // postfix
zz_pX& operator--(zz_pX& x); // prefix
void operator--(zz_pX& x, int); // postfix
// procedural versions:
void add(zz_pX& x, const zz_pX& a, const zz_pX& b); // x = a + b
void sub(zz_pX& x, const zz_pX& a, const zz_pX& b); // x = a - b
void negate(zz_pX& x, const zz_pX& a); // x = -a
// PROMOTIONS: binary +, - and procedures add, sub promote {long, zz_p}
// to zz_pX on (a, b).
/**************************************************************************\
Multiplication
\**************************************************************************/
// operator notation:
zz_pX operator*(const zz_pX& a, const zz_pX& b);
zz_pX& operator*=(zz_pX& x, const zz_pX& a);
zz_pX& operator*=(zz_pX& x, zz_p a);
zz_pX& operator*=(zz_pX& x, long a);
// procedural versions:
void mul(zz_pX& x, const zz_pX& a, const zz_pX& b); // x = a * b
void sqr(zz_pX& x, const zz_pX& a); // x = a^2
zz_pX sqr(const zz_pX& a);
// PROMOTIONS: operator * and procedure mul promote {long, zz_p} to zz_pX
// on (a, b).
void power(zz_pX& x, const zz_pX& a, long e); // x = a^e (e >= 0)
zz_pX power(const zz_pX& a, long e);
/**************************************************************************\
Shift Operations
LeftShift by n means multiplication by X^n
RightShift by n means division by X^n
A negative shift amount reverses the direction of the shift.
\**************************************************************************/
// operator notation:
zz_pX operator<<(const zz_pX& a, long n);
zz_pX operator>>(const zz_pX& a, long n);
zz_pX& operator<<=(zz_pX& x, long n);
zz_pX& operator>>=(zz_pX& x, long n);
// procedural versions:
void LeftShift(zz_pX& x, const zz_pX& a, long n);
zz_pX LeftShift(const zz_pX& a, long n);
void RightShift(zz_pX& x, const zz_pX& a, long n);
zz_pX RightShift(const zz_pX& a, long n);
/**************************************************************************\
Division
\**************************************************************************/
// operator notation:
zz_pX operator/(const zz_pX& a, const zz_pX& b);
zz_pX operator%(const zz_pX& a, const zz_pX& b);
zz_pX& operator/=(zz_pX& x, const zz_pX& a);
zz_pX& operator/=(zz_pX& x, zz_p a);
zz_pX& operator/=(zz_pX& x, long a);
zz_pX& operator%=(zz_pX& x, const zz_pX& b);
// procedural versions:
void DivRem(zz_pX& q, zz_pX& r, const zz_pX& a, const zz_pX& b);
// q = a/b, r = a%b
void div(zz_pX& q, const zz_pX& a, const zz_pX& b);
// q = a/b
void rem(zz_pX& r, const zz_pX& a, const zz_pX& b);
// r = a%b
long divide(zz_pX& q, const zz_pX& a, const zz_pX& b);
// if b | a, sets q = a/b and returns 1; otherwise returns 0
long divide(const zz_pX& a, const zz_pX& b);
// if b | a, sets q = a/b and returns 1; otherwise returns 0
// PROMOTIONS: operator / and procedure div promote {long, zz_p} to zz_pX
// on (a, b).
/**************************************************************************\
GCD's
These routines are intended for use when p is prime.
\**************************************************************************/
void GCD(zz_pX& x, const zz_pX& a, const zz_pX& b);
zz_pX GCD(const zz_pX& a, const zz_pX& b);
// x = GCD(a, b), x is always monic (or zero if a==b==0).
void XGCD(zz_pX& d, zz_pX& s, zz_pX& t, const zz_pX& a, const zz_pX& b);
// d = gcd(a,b), a s + b t = d
// NOTE: A classical algorithm is used, switching over to a
// "half-GCD" algorithm for large degree
/**************************************************************************\
Input/Output
I/O format:
[a_0 a_1 ... a_n],
represents the polynomial a_0 + a_1*X + ... + a_n*X^n.
On output, all coefficients will be integers between 0 and p-1, amd
a_n not zero (the zero polynomial is [ ]). On input, the coefficients
are arbitrary integers which are reduced modulo p, and leading zeros
stripped.
\**************************************************************************/
istream& operator>>(istream& s, zz_pX& x);
ostream& operator<<(ostream& s, const zz_pX& a);
/**************************************************************************\
Some utility routines
\**************************************************************************/
long deg(const zz_pX& a); // return deg(a); deg(0) == -1.
zz_p coeff(const zz_pX& a, long i);
// returns the coefficient of X^i, or zero if i not in range
zz_p LeadCoeff(const zz_pX& a);
// returns leading term of a, or zero if a == 0
zz_p ConstTerm(const zz_pX& a);
// returns constant term of a, or zero if a == 0
void SetCoeff(zz_pX& x, long i, zz_p a);
void SetCoeff(zz_pX& x, long i, long a);
// makes coefficient of X^i equal to a; error is raised if i < 0
void SetCoeff(zz_pX& x, long i);
// makes coefficient of X^i equal to 1; error is raised if i < 0
void SetX(zz_pX& x); // x is set to the monomial X
long IsX(const zz_pX& a); // test if x = X
void diff(zz_pX& x, const zz_pX& a);
zz_pX diff(const zz_pX& a);
// x = derivative of a
void MakeMonic(zz_pX& x);
// if x != 0 makes x into its monic associate; LeadCoeff(x) must be
// invertible in this case.
void reverse(zz_pX& x, const zz_pX& a, long hi);
zz_pX reverse(const zz_pX& a, long hi);
void reverse(zz_pX& x, const zz_pX& a);
zz_pX reverse(const zz_pX& a);
// x = reverse of a[0]..a[hi] (hi >= -1);
// hi defaults to deg(a) in second version
void VectorCopy(vec_zz_p& x, const zz_pX& a, long n);
vec_zz_p VectorCopy(const zz_pX& a, long n);
// x = copy of coefficient vector of a of length exactly n.
// input is truncated or padded with zeroes as appropriate.
/**************************************************************************\
Random Polynomials
\**************************************************************************/
void random(zz_pX& x, long n);
zz_pX random_zz_pX(long n);
// x = random polynomial of degree < n
/**************************************************************************\
Polynomial Evaluation and related problems
\**************************************************************************/
void BuildFromRoots(zz_pX& x, const vec_zz_p& a);
zz_pX BuildFromRoots(const vec_zz_p& a);
// computes the polynomial (X-a[0]) ... (X-a[n-1]), where n =
// a.length()
void eval(zz_p& b, const zz_pX& f, zz_p a);
zz_p eval(const zz_pX& f, zz_p a);
// b = f(a)
void eval(vec_zz_p& b, const zz_pX& f, const vec_zz_p& a);
vec_zz_p eval(const zz_pX& f, const vec_zz_p& a);
// b.SetLength(a.length()); b[i] = f(a[i]) for 0 <= i < a.length()
void interpolate(zz_pX& f, const vec_zz_p& a, const vec_zz_p& b);
zz_pX interpolate(const vec_zz_p& a, const vec_zz_p& b);
// interpolates the polynomial f satisfying f(a[i]) = b[i]. p should
// be prime.
/**************************************************************************\
Arithmetic mod X^n
It is required that n >= 0, otherwise an error is raised.
\**************************************************************************/
void trunc(zz_pX& x, const zz_pX& a, long n); // x = a % X^n
zz_pX trunc(const zz_pX& a, long n);
void MulTrunc(zz_pX& x, const zz_pX& a, const zz_pX& b, long n);
zz_pX MulTrunc(const zz_pX& a, const zz_pX& b, long n);
// x = a * b % X^n
void SqrTrunc(zz_pX& x, const zz_pX& a, long n);
zz_pX SqrTrunc(const zz_pX& a, long n);
// x = a^2 % X^n
void InvTrunc(zz_pX& x, const zz_pX& a, long n);
zz_pX InvTrunc(const zz_pX& a, long n);
// computes x = a^{-1} % X^n. Must have ConstTerm(a) invertible.
/**************************************************************************\
Modular Arithmetic (without pre-conditioning)
Arithmetic mod f.
All inputs and outputs are polynomials of degree less than deg(f), and
deg(f) > 0.
NOTE: if you want to do many computations with a fixed f, use the
zz_pXModulus data structure and associated routines below for better
performance.
\**************************************************************************/
void MulMod(zz_pX& x, const zz_pX& a, const zz_pX& b, const zz_pX& f);
zz_pX MulMod(const zz_pX& a, const zz_pX& b, const zz_pX& f);
// x = (a * b) % f
void SqrMod(zz_pX& x, const zz_pX& a, const zz_pX& f);
zz_pX SqrMod(const zz_pX& a, const zz_pX& f);
// x = a^2 % f
void MulByXMod(zz_pX& x, const zz_pX& a, const zz_pX& f);
zz_pX MulByXMod(const zz_pX& a, const zz_pX& f);
// x = (a * X) mod f
void InvMod(zz_pX& x, const zz_pX& a, const zz_pX& f);
zz_pX InvMod(const zz_pX& a, const zz_pX& f);
// x = a^{-1} % f, error is a is not invertible
long InvModStatus(zz_pX& x, const zz_pX& a, const zz_pX& f);
// if (a, f) = 1, returns 0 and sets x = a^{-1} % f; otherwise,
// returns 1 and sets x = (a, f)
// for modular exponentiation, see below
/**************************************************************************\
Modular Arithmetic with Pre-Conditioning
If you need to do a lot of arithmetic modulo a fixed f, build
zz_pXModulus F for f. This pre-computes information about f that
speeds up subsequent computations. Required: deg(f) > 0 and LeadCoeff(f)
invertible.
As an example, the following routine computes the product modulo f of a vector
of polynomials.
#include "zz_pX.h"
void product(zz_pX& x, const vec_zz_pX& v, const zz_pX& f)
{
zz_pXModulus F(f);
zz_pX res;
res = 1;
long i;
for (i = 0; i < v.length(); i++)
MulMod(res, res, v[i], F);
x = res;
}
Note that automatic conversions are provided so that a zz_pX can
be used wherever a zz_pXModulus is required, and a zz_pXModulus
can be used wherever a zz_pX is required.
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -