亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? tour-ex3.html

?? 一個比較通用的大數(shù)運算庫
?? HTML
字號:
<html>
<head>
<title>
A Tour of NTL: Examples: Polynomials </title>
</head>

<body bgcolor="#fff9e6">

<center>
<a href="tour-ex2.html"><img src="arrow1.gif" alt="[Previous]" align=bottom></a>
 <a href="tour-examples.html"><img src="arrow2.gif" alt="[Up]" align=bottom></a> 
<a href="tour-ex4.html"> <img src="arrow3.gif" alt="[Next]" align=bottom></a>
</center>

<h1> 
<p align=center>
A Tour of NTL: Examples: Polynomials
</p>
</h1>

<p> <hr> <p>

NTL provides extensive support for very fast polynomial arithmetic.
In fact, this was the main motivation for creating NTL in the first place,
because existing computer algebra systems and software
libraries had very slow polynomial arithmetic.
The class <tt>ZZX</tt> represents univariate polynomials
with integer coefficients.

The following program reads a polynomial,
factors it, and prints the factorization.

<p>
<pre>
#include &lt;NTL/ZZXFactoring.h&gt;

NTL_CLIENT

int main()
{
   ZZX f;

   cin &gt;&gt; f;

   vec_pair_ZZX_long factors;
   ZZ c;

   factor(c, factors, f);

   cout &lt;&lt; c &lt;&lt; "\n";
   cout &lt;&lt; factors &lt;&lt; "\n";
}
</pre>
<p>

When this program is compiled an run on input

<pre>
   [2 10 14 6]
</pre>

which represents the polynomial <tt>2 + 10*X + 14*x^2 +6*X^3</tt>,
the output is

<pre>
   2
   [[[1 3] 1] [[1 1] 2]]
</pre>

The first line of output is the content of the polynomial, which
is 2 in this case as each coefficient of the input polynomial
is divisible by 2.
The second line is a vector of pairs, the first member of each 
pair is an irreducible factor of the input, and the second 
is the exponent to which is appears in the factorization.
Thus, all of the above simply means that

<pre>
2 + 10*X + 14*x^2 +6*X^3 = 2 * (1 + 3*X) * (1 + X)^2 
</pre>

<p>
Admittedly, I/O in NTL is not exactly user friendly,
but then NTL has no pretensions about being an interactive
computer algebra system: it is a library for programmers.

<p>
In this example, the type <tt>vec_pair_long_ZZ</tt>
is an NTL vector whose base type is <tt>pair_long_ZZ</tt>.
The type <tt>pair_long_ZZ</tt> is a type created by
another template-like macro mechanism.
In general, for types <tt>S</tt> and <tt>T</tt>,
one can create a type <tt>pair_S_T</tt> which is
a class with a field <tt>a</tt> of type <tt>S</tt>
and a field <tt>b</tt> of type <tt>T</tt>.
See <a href="pair.txt"><tt>pair.txt</tt></a> for more details.



<p> <hr> <p>

Here is another example.
The following program prints out the first 100 cyclotomic polynomials.

<pre>

#include &lt;NTL/ZZX.h&gt;

NTL_CLIENT

int main()
{
   vec_ZZX phi(INIT_SIZE, 100);  

   for (long i = 1; i &lt;= 100; i++) {
      ZZX t;
      t = 1;

      for (long j = 1; j &lt;= i-1; j++)
         if (i % j == 0)
            t *= phi(j);

      phi(i) = (ZZX(i, 1) - 1)/t;  // ZZX(i, a) == X^i * a

      cout &lt;&lt; phi(i) &lt;&lt; "\n";
   }
}
</pre>

<p>
To illustrate more of the NTL interface, let's look at alternative ways 
this routine could have been written.

<p>
First, instead of
<pre>
   vec_ZZX phi(INIT_SIZE, 100);  
</pre>
one can write
<pre>
   vec_ZZX phi;
   phi.SetLength(100);
</pre>

<p>
Second,
instead of
<pre>
            t *= phi(j);
</pre>
one can write this as
<pre>
            mul(t, t, phi(j));
</pre>
or
<pre>
            t = t * phi(j);
</pre>
Also, one can write <tt>phi[j-1]</tt> in place of <tt>phi(j)</tt>.

<p>
Third, instead of
<pre>
      phi(i) = (ZZX(i, 1) - 1)/t;  
</pre>
one can write
<pre>
      ZZX t1;
      SetCoeff(t1, i, 1);
      SetCoeff(t1, 0, -1);
      div(phi(i), t1, t);
</pre>
Alternatively, one could directly access the coefficient vector:
<pre>
      ZZX t1;
      t1.rep.SetLength(i+1); // all vector elements are initialized to zero
      t1.rep[i] = 1;
      t1.rep[0] = -1;
      t1.normalize();  // not necessary here, but good practice in general
      div(phi(i), t1, t);
</pre>
The coefficient vector of a polynomial is always an NTL vector
over the ground ring: in this case <tt>vec_ZZ</tt>.
NTL does not try to be a dictator:  it gives you free access
to the coefficient vector.
However, after fiddling with this vector, you should "normalize"
the polynomial, so that the leading coefficient in non-zero:
this is an invariant which all routines that work with polynomials
expect to hold.
Of course, if you can avoid directly accessing the
coefficient vector, you should do so.
You can always use the <tt>SetCoeff</tt> routine above to set or
change coefficients, and you can always read the value of a coefficient
using the routine <tt>coeff</tt>, e.g., 
<pre>
   ... f.rep[i] == 1 ...
</pre>
is equivalent to
<pre>
   ... coeff(f, i) == 1 ...
</pre>
except that in the latter case, a read-only reference to zero is returned
if the index <tt>i</tt> is out of range.
There are also special-purpose read-only access routines <tt>LeadCoeff(f)</tt>
and <tt>ConstTerm(f)</tt>.
   
      
<p>
NTL provides a full compliment of operations for polynomials
over the integers, in both operator and procedural form.
All of the basic operations support a "promotion logic" similar
to that for <tt>ZZ</tt>, except that inputs of <i>both</i> types 
<tt>long</tt> and <tt>ZZ</tt> are promoted to <tt>ZZX</tt>.
See <a href="ZZX.txt"><tt>ZZX.txt</tt></a> for details,
and see <a href="ZZXFactoring.txt"><tt>ZZXFactoring.txt</tt></a> for details
on the polynomial factoring routines.

<p>

<center>
<a href="tour-ex2.html"><img src="arrow1.gif" alt="[Previous]" align=bottom></a>
 <a href="tour-examples.html"><img src="arrow2.gif" alt="[Up]" align=bottom></a> 
<a href="tour-ex4.html"> <img src="arrow3.gif" alt="[Next]" align=bottom></a>
</center>

</body>
</html>

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
日韩电影一区二区三区四区| 欧美天堂一区二区三区| 日本高清免费不卡视频| 欧美成人aa大片| 亚洲色图丝袜美腿| 国产不卡在线一区| 日韩欧美亚洲一区二区| 亚洲激情校园春色| 国产成人免费9x9x人网站视频| 欧美电影影音先锋| 亚洲激情一二三区| 粉嫩久久99精品久久久久久夜| 日韩免费观看2025年上映的电影| 1000部国产精品成人观看| 国内精品伊人久久久久av一坑| 欧美精品丝袜中出| 亚洲一区二区美女| 在线视频一区二区免费| 中文字幕在线一区免费| 国产91清纯白嫩初高中在线观看 | 成人av中文字幕| 久久久久久亚洲综合影院红桃| 免费人成精品欧美精品| 91精品国产综合久久蜜臀| 亚洲电影你懂得| 国产iv一区二区三区| 欧美电影在线免费观看| 欧美日韩国产三级| 色综合久久综合网欧美综合网| 久久综合九色综合欧美98| 日本亚洲最大的色成网站www| 色乱码一区二区三区88| 一区二区三区欧美视频| 在线免费观看一区| 亚洲激情第一区| 欧美吞精做爰啪啪高潮| 午夜精品爽啪视频| 欧美一区二区三区视频免费| 琪琪一区二区三区| 久久久99免费| 懂色一区二区三区免费观看 | www.视频一区| 亚洲欧洲性图库| 色妞www精品视频| 亚洲一区二区三区国产| 3d动漫精品啪啪1区2区免费| 经典三级一区二区| 国产日韩成人精品| 91免费观看视频在线| 亚洲二区在线视频| 精品日韩欧美在线| 国产成人精品一区二区三区网站观看| 国产精品久久久久一区二区三区| 91丨九色丨蝌蚪丨老版| 亚洲一区二区欧美| 亚洲精品在线观看视频| 成人激情小说网站| 视频一区免费在线观看| 精品久久久久一区二区国产| 成人听书哪个软件好| 一区二区三区在线观看动漫| 日韩欧美亚洲国产另类| zzijzzij亚洲日本少妇熟睡| 五月天国产精品| 久久精品夜色噜噜亚洲a∨| 91在线视频免费观看| 日本成人中文字幕在线视频| 国产精品入口麻豆九色| 在线91免费看| 国产美女av一区二区三区| 一区二区三区精品在线| 精品噜噜噜噜久久久久久久久试看 | gogo大胆日本视频一区| 亚洲午夜精品久久久久久久久| 欧美成人r级一区二区三区| 一本久道久久综合中文字幕| 蜜桃视频一区二区三区| 一区二区三区在线观看网站| 久久久久久久一区| 在线中文字幕不卡| 高清不卡一二三区| 麻豆久久久久久| 亚洲午夜精品17c| 国产精品视频一二三区| 日韩精品一区二区三区在线播放| 色综合久久六月婷婷中文字幕| 极品瑜伽女神91| 性欧美大战久久久久久久久| 国产精品初高中害羞小美女文| 日韩免费看的电影| 欧美无乱码久久久免费午夜一区| 波多野洁衣一区| 国产在线播精品第三| 免费在线观看视频一区| 亚洲成在人线在线播放| 亚洲视频香蕉人妖| 国产精品国产三级国产| 国产农村妇女精品| 久久亚洲综合色| 26uuu亚洲综合色欧美| 91精品国产综合久久蜜臀 | av不卡在线播放| 国产成人在线色| 国产一区二区精品在线观看| 久久福利视频一区二区| 老司机一区二区| 精品影院一区二区久久久| 久久成人久久鬼色| 精品综合久久久久久8888| 久久精品国产一区二区三| 美女一区二区在线观看| 麻豆国产91在线播放| 极品少妇一区二区三区精品视频| 美国十次综合导航| 国模娜娜一区二区三区| 国产露脸91国语对白| 国产精品 欧美精品| 国产91丝袜在线观看| 成人18视频在线播放| av午夜精品一区二区三区| 色婷婷av一区| 欧美日韩成人高清| 日韩欧美在线观看一区二区三区| 91麻豆精品国产91| 欧美变态tickling挠脚心| 精品人在线二区三区| 久久久久久久久伊人| 国产精品久久久久精k8| 亚洲欧美视频在线观看视频| 亚洲女与黑人做爰| 日韩在线卡一卡二| 日本欧美加勒比视频| 国产经典欧美精品| 色综合婷婷久久| 欧美日韩高清一区| 精品美女在线观看| 亚洲欧洲www| 日韩中文欧美在线| 粉嫩在线一区二区三区视频| 一本大道久久a久久综合| 欧美日韩亚洲另类| 久久久久久久久久久久电影| 亚洲女同ⅹxx女同tv| 免费成人美女在线观看.| 国产传媒日韩欧美成人| 欧美丝袜丝交足nylons| 日韩免费福利电影在线观看| 国产精品高潮呻吟| 青青青伊人色综合久久| 成人午夜视频福利| 欧美年轻男男videosbes| 久久久国际精品| 亚洲二区视频在线| 丰满岳乱妇一区二区三区| 欧美色图片你懂的| 久久久九九九九| 日韩在线a电影| 91在线一区二区三区| 精品国产乱子伦一区| 亚洲综合偷拍欧美一区色| 国产91丝袜在线18| 91麻豆精品国产91久久久资源速度| 国产午夜精品久久| 日韩—二三区免费观看av| 97精品国产97久久久久久久久久久久| 欧美精品一二三四| 亚洲色图一区二区三区| 九色porny丨国产精品| 欧美图片一区二区三区| 国产精品视频yy9299一区| 久久 天天综合| 欧美日韩不卡视频| 亚洲欧美一区二区三区久本道91| 国产一区二区在线视频| 欧美色国产精品| 亚洲免费av在线| 成人丝袜视频网| 国产视频视频一区| 全国精品久久少妇| 欧美疯狂做受xxxx富婆| 亚洲精品视频免费观看| 成人精品高清在线| 久久久精品天堂| 极品少妇一区二区三区精品视频| 91精品国产一区二区| 五月天婷婷综合| 在线观看成人小视频| 亚洲精品成人天堂一二三| aaa亚洲精品| 国产精品福利一区| 国产91丝袜在线播放九色| 久久久精品国产免费观看同学| 六月婷婷色综合| 精品裸体舞一区二区三区| 蜜桃视频一区二区三区| 日韩欧美一二三| 国产在线播精品第三| 国产亚洲视频系列| 成人av电影免费在线播放| 国产精品嫩草影院av蜜臀|