?? zz_pxfactoring.h
字號:
#ifndef NTL_ZZ_pXFactoring__H
#define NTL_ZZ_pXFactoring__H
#include <NTL/ZZ.h>
#include <NTL/ZZ_p.h>
#include <NTL/ZZ_pX.h>
#include <NTL/pair_ZZ_pX_long.h>
NTL_OPEN_NNS
/************************************************************
factorization routines
************************************************************/
void SquareFreeDecomp(vec_pair_ZZ_pX_long& u, const ZZ_pX& f);
inline vec_pair_ZZ_pX_long SquareFreeDecomp(const ZZ_pX& f)
{ vec_pair_ZZ_pX_long x; SquareFreeDecomp(x, f); return x; }
// Performs square-free decomposition.
// f must be monic.
// If f = prod_i g_i^i, then u is set to a lest of pairs (g_i, i).
// The list is is increasing order of i, with trivial terms
// (i.e., g_i = 1) deleted.
void FindRoots(vec_ZZ_p& x, const ZZ_pX& f);
inline vec_ZZ_p FindRoots(const ZZ_pX& f)
{ vec_ZZ_p x; FindRoots(x, f); return x; }
// f is monic, and has deg(f) distinct roots.
// returns the list of roots
void FindRoot(ZZ_p& root, const ZZ_pX& f);
inline ZZ_p FindRoot(const ZZ_pX& f)
{ ZZ_p x; FindRoot(x, f); return x; }
// finds a single root of f.
// assumes that f is monic and splits into distinct linear factors
void SFBerlekamp(vec_ZZ_pX& factors, const ZZ_pX& f, long verbose=0);
inline vec_ZZ_pX SFBerlekamp(const ZZ_pX& f, long verbose=0)
{ vec_ZZ_pX x; SFBerlekamp(x, f, verbose); return x; }
// Assumes f is square-free and monic.
// returns list of factors of f.
// Uses "Berlekamp" appraoch.
void berlekamp(vec_pair_ZZ_pX_long& factors, const ZZ_pX& f, long verbose=0);
inline vec_pair_ZZ_pX_long
berlekamp(const ZZ_pX& f, long verbose=0)
{ vec_pair_ZZ_pX_long x; berlekamp(x, f, verbose); return x; }
// returns a list of factors, with multiplicities.
// f must be monic.
// Uses "Berlekamp" appraoch.
extern long ZZ_pX_BlockingFactor;
// Controls GCD blocking for DDF.
void DDF(vec_pair_ZZ_pX_long& factors, const ZZ_pX& f, const ZZ_pX& h,
long verbose=0);
inline vec_pair_ZZ_pX_long DDF(const ZZ_pX& f, const ZZ_pX& h,
long verbose=0)
{ vec_pair_ZZ_pX_long x; DDF(x, f, h, verbose); return x; }
// Performs distinct-degree factorization.
// Assumes f is monic and square-free, and h = X^p mod f
// Obsolete: see NewDDF, below.
extern long ZZ_pX_GCDTableSize; /* = 4 */
// Controls GCD blocking for NewDDF
extern char ZZ_pX_stem[];
// Determines filename stem for external storage in NewDDF.
extern double ZZ_pXFileThresh; /* = 128 */
// external files are used for baby/giant steps if size
// of these tables exceeds ZZ_pXFileThresh KB.
void NewDDF(vec_pair_ZZ_pX_long& factors, const ZZ_pX& f, const ZZ_pX& h,
long verbose=0);
inline vec_pair_ZZ_pX_long NewDDF(const ZZ_pX& f, const ZZ_pX& h,
long verbose=0)
{ vec_pair_ZZ_pX_long x; NewDDF(x, f, h, verbose); return x; }
// same as above, but uses baby-step/giant-step method
void EDF(vec_ZZ_pX& factors, const ZZ_pX& f, const ZZ_pX& b,
long d, long verbose=0);
inline vec_ZZ_pX EDF(const ZZ_pX& f, const ZZ_pX& b,
long d, long verbose=0)
{ vec_ZZ_pX x; EDF(x, f, b, d, verbose); return x; }
// Performs equal-degree factorization.
// f is monic, square-free, and all irreducible factors have same degree.
// b = X^p mod f.
// d = degree of irreducible factors of f
// Space for the trace-map computation can be controlled via ComposeBound.
void RootEDF(vec_ZZ_pX& factors, const ZZ_pX& f, long verbose=0);
inline vec_ZZ_pX RootEDF(const ZZ_pX& f, long verbose=0)
{ vec_ZZ_pX x; RootEDF(x, f, verbose); return x; }
// EDF for d==1
void SFCanZass(vec_ZZ_pX& factors, const ZZ_pX& f, long verbose=0);
inline vec_ZZ_pX SFCanZass(const ZZ_pX& f, long verbose=0)
{ vec_ZZ_pX x; SFCanZass(x, f, verbose); return x; }
// Assumes f is monic and square-free.
// returns list of factors of f.
// Uses "Cantor/Zassenhaus" approach.
void CanZass(vec_pair_ZZ_pX_long& factors, const ZZ_pX& f,
long verbose=0);
inline vec_pair_ZZ_pX_long CanZass(const ZZ_pX& f, long verbose=0)
{ vec_pair_ZZ_pX_long x; CanZass(x, f, verbose); return x; }
// returns a list of factors, with multiplicities.
// f must be monic.
// Uses "Cantor/Zassenhaus" approach.
void mul(ZZ_pX& f, const vec_pair_ZZ_pX_long& v);
inline ZZ_pX mul(const vec_pair_ZZ_pX_long& v)
{ ZZ_pX x; mul(x, v); return x; }
// multiplies polynomials, with multiplicities
/*************************************************************
irreducible poly's: tests and constructions
**************************************************************/
long ProbIrredTest(const ZZ_pX& f, long iter=1);
// performs a fast, probabilistic irreduciblity test
// the test can err only if f is reducible, and the
// error probability is bounded by p^{-iter}.
long DetIrredTest(const ZZ_pX& f);
// performs a recursive deterministic irreducibility test
// fast in the worst-case (when input is irreducible).
long IterIrredTest(const ZZ_pX& f);
// performs an iterative deterministic irreducibility test,
// based on DDF. Fast on average (when f has a small factor).
void BuildIrred(ZZ_pX& f, long n);
inline ZZ_pX BuildIrred_ZZ_pX(long n)
{ ZZ_pX x; BuildIrred(x, n); NTL_OPT_RETURN(ZZ_pX, x); }
// Build a monic irreducible poly of degree n.
void BuildRandomIrred(ZZ_pX& f, const ZZ_pX& g);
inline ZZ_pX BuildRandomIrred(const ZZ_pX& g)
{ ZZ_pX x; BuildRandomIrred(x, g); NTL_OPT_RETURN(ZZ_pX, x); }
// g is a monic irreducible polynomial.
// constructs a random monic irreducible polynomial f of the same degree.
long ComputeDegree(const ZZ_pX& h, const ZZ_pXModulus& F);
// f = F.f is assumed to be an "equal degree" polynomial
// h = X^p mod f
// the common degree of the irreducible factors of f is computed
// This routine is useful in counting points on elliptic curves
long ProbComputeDegree(const ZZ_pX& h, const ZZ_pXModulus& F);
// same as above, but uses a slightly faster probabilistic algorithm
// the return value may be 0 or may be too big, but for large p
// (relative to n), this happens with very low probability.
void TraceMap(ZZ_pX& w, const ZZ_pX& a, long d, const ZZ_pXModulus& F,
const ZZ_pX& b);
inline ZZ_pX TraceMap(const ZZ_pX& a, long d, const ZZ_pXModulus& F,
const ZZ_pX& b)
{ ZZ_pX x; TraceMap(x, a, d, F, b); return x; }
// w = a+a^q+...+^{q^{d-1}} mod f;
// it is assumed that d >= 0, and b = X^q mod f, q a power of p
// Space allocation can be controlled via ComposeBound (see <NTL/ZZ_pX.h>)
void PowerCompose(ZZ_pX& w, const ZZ_pX& a, long d, const ZZ_pXModulus& F);
inline ZZ_pX PowerCompose(const ZZ_pX& a, long d, const ZZ_pXModulus& F)
{ ZZ_pX x; PowerCompose(x, a, d, F); return x; }
// w = X^{q^d} mod f;
// it is assumed that d >= 0, and b = X^q mod f, q a power of p
// Space allocation can be controlled via ComposeBound (see <NTL/ZZ_pX.h>)
NTL_CLOSE_NNS
#endif
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -