?? g_lip.h
字號:
/* x = floor(a); */
/************************************************************************
Square roots
*************************************************************************/
long _ntl_gsqrts(long n);
/* return floor(sqrt(n)); error raised in n < 0 */
void _ntl_gsqrt(_ntl_gbigint n, _ntl_gbigint *r);
/* *r = floor(sqrt(n)); error raised in n < 0 */
/*********************************************************************
Exponentiation
**********************************************************************/
void _ntl_gexp(_ntl_gbigint a, long e, _ntl_gbigint *b);
/* *b = a^e; error raised if e < 0 */
void _ntl_gexps(long a, long e, _ntl_gbigint *b);
/* *b = a^e; error raised if e < 0 */
/*********************************************************************
Modular Arithmetic
Addition, subtraction, multiplication, squaring division, inversion,
and exponentiation modulo a positive modulus n, where all operands
(except for the exponent in exponentiation) and results are in the
range [0, n-1].
ALIAS RESTRICTION: output parameters should not alias n
***********************************************************************/
void _ntl_gaddmod(_ntl_gbigint a, _ntl_gbigint b, _ntl_gbigint n, _ntl_gbigint *c);
/* *c = (a + b) % n */
void _ntl_gsubmod(_ntl_gbigint a, _ntl_gbigint b, _ntl_gbigint n, _ntl_gbigint *c);
/* *c = (a - b) % n */
void _ntl_gsmulmod(_ntl_gbigint a, long b, _ntl_gbigint n, _ntl_gbigint *c);
/* *c = (a * b) % n */
void _ntl_gmulmod(_ntl_gbigint a, _ntl_gbigint b, _ntl_gbigint n, _ntl_gbigint *c);
/* *c = (a * b) % n */
void _ntl_gsqmod(_ntl_gbigint a, _ntl_gbigint n, _ntl_gbigint *c);
/* *c = (a ^ 2) % n */
void _ntl_ginvmod(_ntl_gbigint a, _ntl_gbigint n, _ntl_gbigint *c);
/* *c = (1 / a) % n; error raised if gcd(b, n) != 1 */
void _ntl_gpowermod(_ntl_gbigint g, _ntl_gbigint e, _ntl_gbigint F,
_ntl_gbigint *h);
/* *b = (a ^ e) % n; */
/**************************************************************************
Euclidean Algorithms
***************************************************************************/
void _ntl_ggcd(_ntl_gbigint m1, _ntl_gbigint m2, _ntl_gbigint *r);
/* *r = greatest common divisor of m1 and m2;
uses binary gcd algorithm */
void _ntl_gexteucl(_ntl_gbigint a, _ntl_gbigint *xa,
_ntl_gbigint b, _ntl_gbigint *xb,
_ntl_gbigint *d);
/*
*d = a * *xa + b * *xb = gcd(a, b);
sets *d, *xa and *xb given a and b;
uses Lehmer`s trick
*/
long _ntl_ginv(_ntl_gbigint a, _ntl_gbigint b, _ntl_gbigint *c);
/*
if (a and b coprime)
{
*c = inv;
return(0);
}
else
{
*c = gcd(a, b);
return(1);
}
where inv is such that (inv * a) == 1 mod b;
error raised if a < 0 or b <= 0
*/
long _ntl_gxxratrecon(_ntl_gbigint x, _ntl_gbigint m,
_ntl_gbigint a_bound, _ntl_gbigint b_bound,
_ntl_gbigint *a, _ntl_gbigint *b);
/* rational reconstruction: see doc in ZZ.txt */
/**********************************************************************
Storage Allocation
These routines use malloc and free.
***********************************************************************/
void _ntl_gsetlength(_ntl_gbigint *v, long len);
/* Allocates enough space to hold a len-digit number,
where each digit has NTL_NBITS bits.
If space must be allocated, space for one extra digit
is always allocated. */
void _ntl_gfree(_ntl_gbigint *x);
/* Free's space held by x, and sets x back to 0. */
/*******************************************************************
Special routines
********************************************************************/
long _ntl_gsize(_ntl_gbigint n);
long _ntl_gisone(_ntl_gbigint n);
long _ntl_gsptest(_ntl_gbigint a);
long _ntl_gwsptest(_ntl_gbigint a);
long _ntl_gcrtinrange(_ntl_gbigint g, _ntl_gbigint a);
void _ntl_gfrombytes(_ntl_gbigint *x, const unsigned char *p, long n);
void _ntl_gbytesfromz(unsigned char *p, _ntl_gbigint a, long nn);
long _ntl_gblock_construct_alloc(_ntl_gbigint *x, long d, long n);
void _ntl_gblock_construct_set(_ntl_gbigint x, _ntl_gbigint *y, long i);
long _ntl_gblock_destroy(_ntl_gbigint x);
long _ntl_gblock_storage(long d);
void _ntl_gcrt_struct_init(void **crt_struct, long n, _ntl_gbigint p,
const long *primes);
void _ntl_gcrt_struct_insert(void *crt_struct, long i, _ntl_gbigint m);
void _ntl_gcrt_struct_free(void *crt_struct);
void _ntl_gcrt_struct_eval(void *crt_struct, _ntl_gbigint *t, const long *a);
long _ntl_gcrt_struct_special(void *crt_struct);
void _ntl_grem_struct_init(void **rem_struct, long n, _ntl_gbigint p,
const long *primes);
void _ntl_grem_struct_free(void *rem_struct);
void _ntl_grem_struct_eval(void *rem_struct, long *x, _ntl_gbigint a);
#if (defined(__cplusplus) && !defined(NTL_CXX_ONLY))
}
#endif
extern int _ntl_gmp_hack;
#define NTL_crt_struct_eval _ntl_gcrt_struct_eval
#define NTL_crt_struct_free _ntl_gcrt_struct_free
#define NTL_crt_struct_init _ntl_gcrt_struct_init
#define NTL_crt_struct_insert _ntl_gcrt_struct_insert
#define NTL_crt_struct_special _ntl_gcrt_struct_special
#define NTL_rem_struct_eval _ntl_grem_struct_eval
#define NTL_rem_struct_free _ntl_grem_struct_free
#define NTL_rem_struct_init _ntl_grem_struct_init
#define NTL_verylong _ntl_gbigint
#define NTL_z2log _ntl_g2log
#define NTL_zabs _ntl_gabs
#define NTL_zadd _ntl_gadd
#define NTL_zaddmod _ntl_gaddmod
#define NTL_zand _ntl_gand
#define NTL_zbit _ntl_gbit
#define NTL_zblock_construct_alloc _ntl_gblock_construct_alloc
#define NTL_zblock_construct_set _ntl_gblock_construct_set
#define NTL_zblock_destroy _ntl_gblock_destroy
#define NTL_zblock_storage _ntl_gblock_storage
#define NTL_zbytesfromz _ntl_gbytesfromz
#define NTL_zcompare _ntl_gcompare
#define NTL_zcopy _ntl_gcopy
#define NTL_zcrtinrange _ntl_gcrtinrange
#define NTL_zdiv _ntl_gdiv
#define NTL_zdoub _ntl_gdoub
#define NTL_zdoubtoz _ntl_gdoubtoz
#define NTL_zexp _ntl_gexp
#define NTL_zexps _ntl_gexps
#define NTL_zexteucl _ntl_gexteucl
#define NTL_zfree _ntl_gfree
#define NTL_zfrombytes _ntl_gfrombytes
#define NTL_zgcd _ntl_ggcd
#define NTL_zintoz _ntl_gintoz
#define NTL_zinv _ntl_ginv
#define NTL_zinvmod _ntl_ginvmod
#define NTL_zisone _ntl_gisone
#define NTL_ziszero _ntl_giszero
#define NTL_zlog _ntl_glog
#define NTL_zlowbits _ntl_glowbits
#define NTL_zlshift _ntl_glshift
#define NTL_zmakeodd _ntl_gmakeodd
#define NTL_zmod _ntl_gmod
#define NTL_zmul _ntl_gmul
#define NTL_zmulmod _ntl_gmulmod
#define NTL_znegate _ntl_gnegate
#define NTL_znumtwos _ntl_gnumtwos
#define NTL_zodd _ntl_godd
#define NTL_zone _ntl_gone
#define NTL_zor _ntl_gor
#define NTL_zpowermod _ntl_gpowermod
#define NTL_zquickmod _ntl_gquickmod
#define NTL_zround_correction _ntl_ground_correction
#define NTL_zrshift _ntl_grshift
#define NTL_zsadd _ntl_gsadd
#define NTL_zscompare _ntl_gscompare
#define NTL_zsdiv _ntl_gsdiv
#define NTL_zsetbit _ntl_gsetbit
#define NTL_zsetlength _ntl_gsetlength
#define NTL_zsign _ntl_gsign
#define NTL_zsize _ntl_gsize
#define NTL_zslowbits _ntl_gslowbits
#define NTL_zsmod _ntl_gsmod
#define NTL_zsmul _ntl_gsmul
#define NTL_zsmulmod _ntl_gsmulmod
#define NTL_zsptest _ntl_gsptest
#define NTL_zsq _ntl_gsq
#define NTL_zsqmod _ntl_gsqmod
#define NTL_zsqrt _ntl_gsqrt
#define NTL_zsqrts _ntl_gsqrts
#define NTL_zsub _ntl_gsub
#define NTL_zsubmod _ntl_gsubmod
#define NTL_zsubpos _ntl_gsubpos
#define NTL_zswap _ntl_gswap
#define NTL_zswitchbit _ntl_gswitchbit
#define NTL_ztoint _ntl_gtoint
#define NTL_ztouint _ntl_gtouint
#define NTL_zuintoz _ntl_guintoz
#define NTL_zweight _ntl_gweight
#define NTL_zweights _ntl_gweights
#define NTL_zwsptest _ntl_gwsptest
#define NTL_zxor _ntl_gxor
#define NTL_zxxratrecon _ntl_gxxratrecon
#define NTL_zzero _ntl_gzero
#define NTL_GMP_LIP
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -