?? zz_px.h
字號:
/*****************************************************************
Multiplication
******************************************************************/
void mul(ZZ_pX& x, const ZZ_pX& a, const ZZ_pX& b);
// x = a * b
void sqr(ZZ_pX& x, const ZZ_pX& a);
inline ZZ_pX sqr(const ZZ_pX& a)
{ ZZ_pX x; sqr(x, a); NTL_OPT_RETURN(ZZ_pX, x); }
// x = a^2
void mul(ZZ_pX & x, const ZZ_pX& a, const ZZ_p& b);
void mul(ZZ_pX& x, const ZZ_pX& a, long b);
inline void mul(ZZ_pX& x, const ZZ_p& a, const ZZ_pX& b)
{ mul(x, b, a); }
inline void mul(ZZ_pX& x, long a, const ZZ_pX& b)
{ mul(x, b, a); }
inline ZZ_pX operator*(const ZZ_pX& a, const ZZ_pX& b)
{ ZZ_pX x; mul(x, a, b); NTL_OPT_RETURN(ZZ_pX, x); }
inline ZZ_pX operator*(const ZZ_pX& a, const ZZ_p& b)
{ ZZ_pX x; mul(x, a, b); NTL_OPT_RETURN(ZZ_pX, x); }
inline ZZ_pX operator*(const ZZ_pX& a, long b)
{ ZZ_pX x; mul(x, a, b); NTL_OPT_RETURN(ZZ_pX, x); }
inline ZZ_pX operator*(const ZZ_p& a, const ZZ_pX& b)
{ ZZ_pX x; mul(x, a, b); NTL_OPT_RETURN(ZZ_pX, x); }
inline ZZ_pX operator*(long a, const ZZ_pX& b)
{ ZZ_pX x; mul(x, a, b); NTL_OPT_RETURN(ZZ_pX, x); }
inline ZZ_pX& operator*=(ZZ_pX& x, const ZZ_pX& b)
{ mul(x, x, b); return x; }
inline ZZ_pX& operator*=(ZZ_pX& x, const ZZ_p& b)
{ mul(x, x, b); return x; }
inline ZZ_pX& operator*=(ZZ_pX& x, long b)
{ mul(x, x, b); return x; }
void PlainMul(ZZ_pX& x, const ZZ_pX& a, const ZZ_pX& b);
// always uses the "classical" algorithm
void PlainSqr(ZZ_pX& x, const ZZ_pX& a);
// always uses the "classical" algorithm
void FFTMul(ZZ_pX& x, const ZZ_pX& a, const ZZ_pX& b);
// always uses the FFT
void FFTSqr(ZZ_pX& x, const ZZ_pX& a);
// always uses the FFT
void MulTrunc(ZZ_pX& x, const ZZ_pX& a, const ZZ_pX& b, long n);
// x = a * b % X^n
inline ZZ_pX MulTrunc(const ZZ_pX& a, const ZZ_pX& b, long n)
{ ZZ_pX x; MulTrunc(x, a, b, n); NTL_OPT_RETURN(ZZ_pX, x); }
void PlainMulTrunc(ZZ_pX& x, const ZZ_pX& a, const ZZ_pX& b, long n);
void FFTMulTrunc(ZZ_pX& x, const ZZ_pX& a, const ZZ_pX& b, long n);
void SqrTrunc(ZZ_pX& x, const ZZ_pX& a, long n);
// x = a^2 % X^n
inline ZZ_pX SqrTrunc(const ZZ_pX& a, long n)
{ ZZ_pX x; SqrTrunc(x, a, n); NTL_OPT_RETURN(ZZ_pX, x); }
void PlainSqrTrunc(ZZ_pX& x, const ZZ_pX& a, long n);
void FFTSqrTrunc(ZZ_pX& x, const ZZ_pX& a, long n);
void power(ZZ_pX& x, const ZZ_pX& a, long e);
inline ZZ_pX power(const ZZ_pX& a, long e)
{ ZZ_pX x; power(x, a, e); NTL_OPT_RETURN(ZZ_pX, x); }
// The following data structures and routines allow one
// to hand-craft various algorithms, using the FFT convolution
// algorithms directly.
// Look in the file ZZ_pX.c for examples.
// FFT representation of polynomials
class FFTRep {
public:
long k; // a 2^k point representation
long MaxK; // maximum space allocated
long **tbl;
long NumPrimes;
void SetSize(long NewK);
FFTRep(const FFTRep& R);
FFTRep& operator=(const FFTRep& R);
FFTRep() { k = MaxK = -1; tbl = 0; NumPrimes = 0; }
FFTRep(INIT_SIZE_TYPE, long InitK)
{ k = MaxK = -1; tbl = 0; NumPrimes = 0; SetSize(InitK); }
~FFTRep();
};
void ToFFTRep(FFTRep& y, const ZZ_pX& x, long k, long lo, long hi);
// computes an n = 2^k point convolution of x[lo..hi].
inline void ToFFTRep(FFTRep& y, const ZZ_pX& x, long k)
{ ToFFTRep(y, x, k, 0, deg(x)); }
void RevToFFTRep(FFTRep& y, const vec_ZZ_p& x,
long k, long lo, long hi, long offset);
// computes an n = 2^k point convolution of X^offset*x[lo..hi] mod X^n-1
// using "inverted" evaluation points.
void FromFFTRep(ZZ_pX& x, FFTRep& y, long lo, long hi);
// converts from FFT-representation to coefficient representation
// only the coefficients lo..hi are computed
// NOTE: this version destroys the data in y
// non-destructive versions of the above
void NDFromFFTRep(ZZ_pX& x, const FFTRep& y, long lo, long hi, FFTRep& temp);
void NDFromFFTRep(ZZ_pX& x, const FFTRep& y, long lo, long hi);
void RevFromFFTRep(vec_ZZ_p& x, FFTRep& y, long lo, long hi);
// converts from FFT-representation to coefficient representation
// using "inverted" evaluation points.
// only the coefficients lo..hi are computed
void FromFFTRep(ZZ_p* x, FFTRep& y, long lo, long hi);
// convert out coefficients lo..hi of y, store result in x.
// no normalization is done.
// direct manipulation of FFT reps
void mul(FFTRep& z, const FFTRep& x, const FFTRep& y);
void sub(FFTRep& z, const FFTRep& x, const FFTRep& y);
void add(FFTRep& z, const FFTRep& x, const FFTRep& y);
void reduce(FFTRep& x, const FFTRep& a, long k);
// reduces a 2^l point FFT-rep to a 2^k point FFT-rep
void AddExpand(FFTRep& x, const FFTRep& a);
// x = x + (an "expanded" version of a)
// This data structure holds unconvoluted modular representations
// of polynomials
class ZZ_pXModRep {
private:
ZZ_pXModRep(const ZZ_pXModRep&); // disabled
void operator=(const ZZ_pXModRep&); // disabled
public:
long n;
long MaxN;
long **tbl;
long NumPrimes;
void SetSize(long NewN);
ZZ_pXModRep() { n = MaxN = 0; tbl = 0; NumPrimes = 0; }
ZZ_pXModRep(INIT_SIZE_TYPE, long k)
{ n = MaxN = 0; tbl = 0; NumPrimes = 0; SetSize(k); }
~ZZ_pXModRep();
};
void ToZZ_pXModRep(ZZ_pXModRep& x, const ZZ_pX& a, long lo, long hi);
void ToFFTRep(FFTRep& x, const ZZ_pXModRep& a, long k, long lo, long hi);
// converts coefficients lo..hi to a 2^k-point FFTRep.
// must have hi-lo+1 < 2^k
/*************************************************************
Division
**************************************************************/
void DivRem(ZZ_pX& q, ZZ_pX& r, const ZZ_pX& a, const ZZ_pX& b);
// q = a/b, r = a%b
void div(ZZ_pX& q, const ZZ_pX& a, const ZZ_pX& b);
// q = a/b
void div(ZZ_pX& q, const ZZ_pX& a, const ZZ_p& b);
void div(ZZ_pX& q, const ZZ_pX& a, long b);
void rem(ZZ_pX& r, const ZZ_pX& a, const ZZ_pX& b);
// r = a%b
long divide(ZZ_pX& q, const ZZ_pX& a, const ZZ_pX& b);
// if b | a, sets q = a/b and returns 1; otherwise returns 0
long divide(const ZZ_pX& a, const ZZ_pX& b);
// if b | a, sets q = a/b and returns 1; otherwise returns 0
void InvTrunc(ZZ_pX& x, const ZZ_pX& a, long m);
// computes x = a^{-1} % X^m
// constant term must be non-zero
inline ZZ_pX InvTrunc(const ZZ_pX& a, long m)
{ ZZ_pX x; InvTrunc(x, a, m); NTL_OPT_RETURN(ZZ_pX, x); }
// These always use "classical" arithmetic
void PlainDivRem(ZZ_pX& q, ZZ_pX& r, const ZZ_pX& a, const ZZ_pX& b);
void PlainDiv(ZZ_pX& q, const ZZ_pX& a, const ZZ_pX& b);
void PlainRem(ZZ_pX& r, const ZZ_pX& a, const ZZ_pX& b);
void PlainRem(ZZ_pX& r, const ZZ_pX& a, const ZZ_pX& b, ZZVec& tmp);
void PlainDivRem(ZZ_pX& q, ZZ_pX& r, const ZZ_pX& a, const ZZ_pX& b,
ZZVec& tmp);
// These always use FFT arithmetic
void FFTDivRem(ZZ_pX& q, ZZ_pX& r, const ZZ_pX& a, const ZZ_pX& b);
void FFTDiv(ZZ_pX& q, const ZZ_pX& a, const ZZ_pX& b);
void FFTRem(ZZ_pX& r, const ZZ_pX& a, const ZZ_pX& b);
void PlainInvTrunc(ZZ_pX& x, const ZZ_pX& a, long m);
// always uses "classical" algorithm
// ALIAS RESTRICTION: input may not alias output
void NewtonInvTrunc(ZZ_pX& x, const ZZ_pX& a, long m);
// uses a Newton Iteration with the FFT.
// ALIAS RESTRICTION: input may not alias output
inline ZZ_pX operator/(const ZZ_pX& a, const ZZ_pX& b)
{ ZZ_pX x; div(x, a, b); NTL_OPT_RETURN(ZZ_pX, x); }
inline ZZ_pX operator/(const ZZ_pX& a, const ZZ_p& b)
{ ZZ_pX x; div(x, a, b); NTL_OPT_RETURN(ZZ_pX, x); }
inline ZZ_pX operator/(const ZZ_pX& a, long b)
{ ZZ_pX x; div(x, a, b); NTL_OPT_RETURN(ZZ_pX, x); }
inline ZZ_pX& operator/=(ZZ_pX& x, const ZZ_p& b)
{ div(x, x, b); return x; }
inline ZZ_pX& operator/=(ZZ_pX& x, long b)
{ div(x, x, b); return x; }
inline ZZ_pX& operator/=(ZZ_pX& x, const ZZ_pX& b)
{ div(x, x, b); return x; }
inline ZZ_pX operator%(const ZZ_pX& a, const ZZ_pX& b)
{ ZZ_pX x; rem(x, a, b); NTL_OPT_RETURN(ZZ_pX, x); }
inline ZZ_pX& operator%=(ZZ_pX& x, const ZZ_pX& b)
{ rem(x, x, b); return x; }
/***********************************************************
GCD's
************************************************************/
void GCD(ZZ_pX& x, const ZZ_pX& a, const ZZ_pX& b);
// x = GCD(a, b), x is always monic (or zero if a==b==0).
inline ZZ_pX GCD(const ZZ_pX& a, const ZZ_pX& b)
{ ZZ_pX x; GCD(x, a, b); NTL_OPT_RETURN(ZZ_pX, x); }
void XGCD(ZZ_pX& d, ZZ_pX& s, ZZ_pX& t, const ZZ_pX& a, const ZZ_pX& b);
// d = gcd(a,b), a s + b t = d
void PlainXGCD(ZZ_pX& d, ZZ_pX& s, ZZ_pX& t, const ZZ_pX& a, const ZZ_pX& b);
// same as above, but uses classical algorithm
void PlainGCD(ZZ_pX& x, const ZZ_pX& a, const ZZ_pX& b);
// always uses "cdlassical" arithmetic
class ZZ_pXMatrix {
private:
ZZ_pXMatrix(const ZZ_pXMatrix&); // disable
ZZ_pX elts[2][2];
public:
ZZ_pXMatrix() { }
~ZZ_pXMatrix() { }
void operator=(const ZZ_pXMatrix&);
ZZ_pX& operator() (long i, long j) { return elts[i][j]; }
const ZZ_pX& operator() (long i, long j) const { return elts[i][j]; }
};
void HalfGCD(ZZ_pXMatrix& M_out, const ZZ_pX& U, const ZZ_pX& V, long d_red);
// deg(U) > deg(V), 1 <= d_red <= deg(U)+1.
//
// This computes a 2 x 2 polynomial matrix M_out such that
// M_out * (U, V)^T = (U', V')^T,
// where U', V' are consecutive polynomials in the Euclidean remainder
// sequence of U, V, and V' is the polynomial of highest degree
// satisfying deg(V') <= deg(U) - d_red.
void XHalfGCD(ZZ_pXMatrix& M_out, ZZ_pX& U, ZZ_pX& V, long d_red);
// same as above, except that U is replaced by U', and V by V'
/*************************************************************
Modular Arithmetic without pre-conditioning
**************************************************************/
// arithmetic mod f.
// all inputs and outputs are polynomials of degree less than deg(f).
// ASSUMPTION: f is assumed monic, and deg(f) > 0.
// NOTE: if you want to do many computations with a fixed f,
// use the ZZ_pXModulus data structure and associated routines below.
void MulMod(ZZ_pX& x, const ZZ_pX& a, const ZZ_pX& b, const ZZ_pX& f);
// x = (a * b) % f
inline ZZ_pX MulMod(const ZZ_pX& a, const ZZ_pX& b, const ZZ_pX& f)
{ ZZ_pX x; MulMod(x, a, b, f); NTL_OPT_RETURN(ZZ_pX, x); }
void SqrMod(ZZ_pX& x, const ZZ_pX& a, const ZZ_pX& f);
// x = a^2 % f
inline ZZ_pX SqrMod(const ZZ_pX& a, const ZZ_pX& f)
{ ZZ_pX x; SqrMod(x, a, f); NTL_OPT_RETURN(ZZ_pX, x); }
void MulByXMod(ZZ_pX& x, const ZZ_pX& a, const ZZ_pX& f);
// x = (a * X) mod f
inline ZZ_pX MulByXMod(const ZZ_pX& a, const ZZ_pX& f)
{ ZZ_pX x; MulByXMod(x, a, f); NTL_OPT_RETURN(ZZ_pX, x); }
void InvMod(ZZ_pX& x, const ZZ_pX& a, const ZZ_pX& f);
// x = a^{-1} % f, error is a is not invertible
inline ZZ_pX InvMod(const ZZ_pX& a, const ZZ_pX& f)
{ ZZ_pX x; InvMod(x, a, f); NTL_OPT_RETURN(ZZ_pX, x); }
long InvModStatus(ZZ_pX& x, const ZZ_pX& a, const ZZ_pX& f);
// if (a, f) = 1, returns 0 and sets x = a^{-1} % f
// otherwise, returns 1 and sets x = (a, f)
/******************************************************************
Modular Arithmetic with Pre-conditioning
*******************************************************************/
// If you need to do a lot of arithmetic modulo a fixed f,
// build ZZ_pXModulus F for f. This pre-computes information about f
// that speeds up the computation a great deal.
class ZZ_pXModulus {
public:
ZZ_pXModulus() : UseFFT(0), n(-1) { }
~ZZ_pXModulus() { }
// the following members may become private in future
ZZ_pX f; // the modulus
long UseFFT;// flag indicating whether FFT should be used.
long n; // n = deg(f)
long k; // least k s/t 2^k >= n
long l; // least l s/t 2^l >= 2n-3
FFTRep FRep; // 2^k point rep of f
// H = rev((rev(f))^{-1} rem X^{n-1})
FFTRep HRep; // 2^l point rep of H
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -