?? fft.h
字號:
#ifndef NTL_FFT__H
#define NTL_FFT__H
#include <NTL/vec_long.h>
#include <NTL/ZZ.h>
NTL_OPEN_NNS
#define NTL_FFTFudge (4)
// This constant is used in selecting the correct
// number of FFT primes for polynomial multiplication
// in ZZ_pX and zz_pX. Set at 4, this allows for
// two FFT reps to be added or subtracted once,
// before performing CRT, and leaves a reasonable margin for error.
// Don't change this!
#define NTL_FFTMaxRootBnd (NTL_SP_NBITS-2)
// Absolute maximum root bound for FFT primes.
// Don't change this!
#if (25 <= NTL_FFTMaxRootBnd)
#define NTL_FFTMaxRoot (25)
#else
#define NTL_FFTMaxRoot NTL_FFTMaxRootBnd
#endif
// Root bound for FFT primes. Held to a maximum
// of 25 to avoid large tables and excess precomputation,
// and to keep the number of FFT primes needed small.
// This means we can multiply polynomials of degree less than 2^24.
// This can be increased, with a slight performance penalty.
extern long NumFFTPrimes;
extern long *FFTPrime;
extern long **RootTable;
extern long **RootInvTable;
extern long **TwoInvTable;
extern double *FFTPrimeInv;
/****************
RootTable[i][j] = w^{2^{MaxRoot-j}},
where w is a primitive 2^MaxRoot root of unity
for FFTPrime[i]
RootInvTable[i][j] = 1/RootTable[i][j] mod FFTPrime[i]
TwoInvTable[i][j] = 1/2^j mod FFTPrime[i]
These tables are allocated and initialized at run-time
with UseFFTPrime(i).
*****************/
long CalcMaxRoot(long p);
// calculates max power of two supported by this FFT prime.
void UseFFTPrime(long index);
// allocates and initializes information for FFT prime
void FFT(long* A, const long* a, long k, long q, const long* root);
// the low-level FFT routine.
// computes a 2^k point FFT modulo q, using the table root for the roots.
NTL_CLOSE_NNS
#endif
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -