?? mat_rr.cpp
字號:
#include <NTL/mat_RR.h>
#include <NTL/new.h>
NTL_START_IMPL
NTL_matrix_impl(RR,vec_RR,vec_vec_RR,mat_RR)
NTL_io_matrix_impl(RR,vec_RR,vec_vec_RR,mat_RR)
NTL_eq_matrix_impl(RR,vec_RR,vec_vec_RR,mat_RR)
void add(mat_RR& X, const mat_RR& A, const mat_RR& B)
{
long n = A.NumRows();
long m = A.NumCols();
if (B.NumRows() != n || B.NumCols() != m)
Error("matrix add: dimension mismatch");
X.SetDims(n, m);
long i, j;
for (i = 1; i <= n; i++)
for (j = 1; j <= m; j++)
add(X(i,j), A(i,j), B(i,j));
}
void sub(mat_RR& X, const mat_RR& A, const mat_RR& B)
{
long n = A.NumRows();
long m = A.NumCols();
if (B.NumRows() != n || B.NumCols() != m)
Error("matrix sub: dimension mismatch");
X.SetDims(n, m);
long i, j;
for (i = 1; i <= n; i++)
for (j = 1; j <= m; j++)
sub(X(i,j), A(i,j), B(i,j));
}
void mul_aux(mat_RR& X, const mat_RR& A, const mat_RR& B)
{
long n = A.NumRows();
long l = A.NumCols();
long m = B.NumCols();
if (l != B.NumRows())
Error("matrix mul: dimension mismatch");
X.SetDims(n, m);
long i, j, k;
RR acc, tmp;
for (i = 1; i <= n; i++) {
for (j = 1; j <= m; j++) {
clear(acc);
for(k = 1; k <= l; k++) {
mul(tmp, A(i,k), B(k,j));
add(acc, acc, tmp);
}
X(i,j) = acc;
}
}
}
void mul(mat_RR& X, const mat_RR& A, const mat_RR& B)
{
if (&X == &A || &X == &B) {
mat_RR tmp;
mul_aux(tmp, A, B);
X = tmp;
}
else
mul_aux(X, A, B);
}
static
void mul_aux(vec_RR& x, const mat_RR& A, const vec_RR& b)
{
long n = A.NumRows();
long l = A.NumCols();
if (l != b.length())
Error("matrix mul: dimension mismatch");
x.SetLength(n);
long i, k;
RR acc, tmp;
for (i = 1; i <= n; i++) {
clear(acc);
for (k = 1; k <= l; k++) {
mul(tmp, A(i,k), b(k));
add(acc, acc, tmp);
}
x(i) = acc;
}
}
void mul(vec_RR& x, const mat_RR& A, const vec_RR& b)
{
if (&b == &x || A.position1(x) != -1) {
vec_RR tmp;
mul_aux(tmp, A, b);
x = tmp;
}
else
mul_aux(x, A, b);
}
static
void mul_aux(vec_RR& x, const vec_RR& a, const mat_RR& B)
{
long n = B.NumRows();
long l = B.NumCols();
if (n != a.length())
Error("matrix mul: dimension mismatch");
x.SetLength(l);
long i, k;
RR acc, tmp;
for (i = 1; i <= l; i++) {
clear(acc);
for (k = 1; k <= n; k++) {
mul(tmp, a(k), B(k,i));
add(acc, acc, tmp);
}
x(i) = acc;
}
}
void mul(vec_RR& x, const vec_RR& a, const mat_RR& B)
{
if (&a == &x) {
vec_RR tmp;
mul_aux(tmp, a, B);
x = tmp;
}
else
mul_aux(x, a, B);
}
void ident(mat_RR& X, long n)
{
X.SetDims(n, n);
long i, j;
for (i = 1; i <= n; i++)
for (j = 1; j <= n; j++)
if (i == j)
set(X(i, j));
else
clear(X(i, j));
}
void determinant(RR& d, const mat_RR& M_in)
{
long k, n;
long i, j;
long pos;
RR t1, t2;
RR *x, *y;
n = M_in.NumRows();
if (M_in.NumCols() != n)
Error("determinant: nonsquare matrix");
if (n == 0) {
set(d);
return;
}
mat_RR M;
M = M_in;
RR det;
set(det);
RR maxval;
for (k = 0; k < n; k++) {
pos = -1;
clear(maxval);
for (i = k; i < n; i++) {
abs(t1, M[i][k]);
if (t1 > maxval) {
pos = i;
maxval = t1;
}
}
if (pos != -1) {
if (k != pos) {
swap(M[pos], M[k]);
negate(det, det);
}
mul(det, det, M[k][k]);
// make M[k, k] == -1
inv(t1, M[k][k]);
negate(t1, t1);
for (j = k+1; j < n; j++) {
mul(M[k][j], M[k][j], t1);
}
for (i = k+1; i < n; i++) {
// M[i] = M[i] + M[k]*M[i,k]
t1 = M[i][k];
x = M[i].elts() + (k+1);
y = M[k].elts() + (k+1);
for (j = k+1; j < n; j++, x++, y++) {
// *x = *x + (*y)*t1
mul(t2, *y, t1);
add(*x, *x, t2);
}
}
}
else {
clear(d);
return;
}
}
d = det;
}
RR determinant(const mat_RR& a)
{ RR x; determinant(x, a); NTL_OPT_RETURN(RR, x); }
long IsIdent(const mat_RR& A, long n)
{
if (A.NumRows() != n || A.NumCols() != n)
return 0;
long i, j;
for (i = 1; i <= n; i++)
for (j = 1; j <= n; j++)
if (i != j) {
if (!IsZero(A(i, j))) return 0;
}
else {
if (!IsOne(A(i, j))) return 0;
}
return 1;
}
void transpose(mat_RR& X, const mat_RR& A)
{
long n = A.NumRows();
long m = A.NumCols();
long i, j;
if (&X == & A) {
if (n == m)
for (i = 1; i <= n; i++)
for (j = i+1; j <= n; j++)
swap(X(i, j), X(j, i));
else {
mat_RR tmp;
tmp.SetDims(m, n);
for (i = 1; i <= n; i++)
for (j = 1; j <= m; j++)
tmp(j, i) = A(i, j);
X.kill();
X = tmp;
}
}
else {
X.SetDims(m, n);
for (i = 1; i <= n; i++)
for (j = 1; j <= m; j++)
X(j, i) = A(i, j);
}
}
void solve(RR& d, vec_RR& X,
const mat_RR& A, const vec_RR& b)
{
long n = A.NumRows();
if (A.NumCols() != n)
Error("solve: nonsquare matrix");
if (b.length() != n)
Error("solve: dimension mismatch");
if (n == 0) {
set(d);
X.SetLength(0);
return;
}
long i, j, k, pos;
RR t1, t2;
RR *x, *y;
mat_RR M;
M.SetDims(n, n+1);
for (i = 0; i < n; i++) {
for (j = 0; j < n; j++)
M[i][j] = A[j][i];
M[i][n] = b[i];
}
RR det;
set(det);
RR maxval;
for (k = 0; k < n; k++) {
pos = -1;
clear(maxval);
for (i = k; i < n; i++) {
abs(t1, M[i][k]);
if (t1 > maxval) {
pos = i;
maxval = t1;
}
}
if (pos != -1) {
if (k != pos) {
swap(M[pos], M[k]);
negate(det, det);
}
mul(det, det, M[k][k]);
// make M[k, k] == -1
inv(t1, M[k][k]);
negate(t1, t1);
for (j = k+1; j <= n; j++) {
mul(M[k][j], M[k][j], t1);
}
for (i = k+1; i < n; i++) {
// M[i] = M[i] + M[k]*M[i,k]
t1 = M[i][k];
x = M[i].elts() + (k+1);
y = M[k].elts() + (k+1);
for (j = k+1; j <= n; j++, x++, y++) {
// *x = *x + (*y)*t1
mul(t2, *y, t1);
add(*x, *x, t2);
}
}
}
else {
clear(d);
return;
}
}
X.SetLength(n);
for (i = n-1; i >= 0; i--) {
clear(t1);
for (j = i+1; j < n; j++) {
mul(t2, X[j], M[i][j]);
add(t1, t1, t2);
}
sub(t1, t1, M[i][n]);
X[i] = t1;
}
d = det;
}
void inv(RR& d, mat_RR& X, const mat_RR& A)
{
long n = A.NumRows();
if (A.NumCols() != n)
Error("inv: nonsquare matrix");
if (n == 0) {
set(d);
X.SetDims(0, 0);
return;
}
long i, j, k, pos;
RR t1, t2;
RR *x, *y;
mat_RR M;
M.SetDims(n, 2*n);
for (i = 0; i < n; i++) {
for (j = 0; j < n; j++) {
M[i][j] = A[i][j];
clear(M[i][n+j]);
}
set(M[i][n+i]);
}
RR det;
set(det);
RR maxval;
for (k = 0; k < n; k++) {
pos = -1;
clear(maxval);
for (i = k; i < n; i++) {
abs(t1, M[i][k]);
if (t1 > maxval) {
pos = i;
maxval = t1;
}
}
if (pos != -1) {
if (k != pos) {
swap(M[pos], M[k]);
negate(det, det);
}
mul(det, det, M[k][k]);
// make M[k, k] == -1
inv(t1, M[k][k]);
negate(t1, t1);
for (j = k+1; j < 2*n; j++) {
mul(M[k][j], M[k][j], t1);
}
for (i = k+1; i < n; i++) {
// M[i] = M[i] + M[k]*M[i,k]
t1 = M[i][k];
x = M[i].elts() + (k+1);
y = M[k].elts() + (k+1);
for (j = k+1; j < 2*n; j++, x++, y++) {
// *x = *x + (*y)*t1
mul(t2, *y, t1);
add(*x, *x, t2);
}
}
}
else {
clear(d);
return;
}
}
X.SetDims(n, n);
for (k = 0; k < n; k++) {
for (i = n-1; i >= 0; i--) {
clear(t1);
for (j = i+1; j < n; j++) {
mul(t2, X[j][k], M[i][j]);
add(t1, t1, t2);
}
sub(t1, t1, M[i][n+k]);
X[i][k] = t1;
}
}
d = det;
}
void mul(mat_RR& X, const mat_RR& A, const RR& b_in)
{
RR b = b_in;
long n = A.NumRows();
long m = A.NumCols();
X.SetDims(n, m);
long i, j;
for (i = 0; i < n; i++)
for (j = 0; j < m; j++)
mul(X[i][j], A[i][j], b);
}
void mul(mat_RR& X, const mat_RR& A, double b_in)
{
static RR b;
b = b_in;
long n = A.NumRows();
long m = A.NumCols();
X.SetDims(n, m);
long i, j;
for (i = 0; i < n; i++)
for (j = 0; j < m; j++)
mul(X[i][j], A[i][j], b);
}
void diag(mat_RR& X, long n, const RR& d_in)
{
RR d = d_in;
X.SetDims(n, n);
long i, j;
for (i = 1; i <= n; i++)
for (j = 1; j <= n; j++)
if (i == j)
X(i, j) = d;
else
clear(X(i, j));
}
long IsDiag(const mat_RR& A, long n, const RR& d)
{
if (A.NumRows() != n || A.NumCols() != n)
return 0;
long i, j;
for (i = 1; i <= n; i++)
for (j = 1; j <= n; j++)
if (i != j) {
if (!IsZero(A(i, j))) return 0;
}
else {
if (A(i, j) != d) return 0;
}
return 1;
}
void negate(mat_RR& X, const mat_RR& A)
{
long n = A.NumRows();
long m = A.NumCols();
X.SetDims(n, m);
long i, j;
for (i = 1; i <= n; i++)
for (j = 1; j <= m; j++)
negate(X(i,j), A(i,j));
}
long IsZero(const mat_RR& a)
{
long n = a.NumRows();
long i;
for (i = 0; i < n; i++)
if (!IsZero(a[i]))
return 0;
return 1;
}
void clear(mat_RR& x)
{
long n = x.NumRows();
long i;
for (i = 0; i < n; i++)
clear(x[i]);
}
mat_RR operator+(const mat_RR& a, const mat_RR& b)
{
mat_RR res;
add(res, a, b);
NTL_OPT_RETURN(mat_RR, res);
}
mat_RR operator*(const mat_RR& a, const mat_RR& b)
{
mat_RR res;
mul_aux(res, a, b);
NTL_OPT_RETURN(mat_RR, res);
}
mat_RR operator-(const mat_RR& a, const mat_RR& b)
{
mat_RR res;
sub(res, a, b);
NTL_OPT_RETURN(mat_RR, res);
}
mat_RR operator-(const mat_RR& a)
{
mat_RR res;
negate(res, a);
NTL_OPT_RETURN(mat_RR, res);
}
vec_RR operator*(const mat_RR& a, const vec_RR& b)
{
vec_RR res;
mul_aux(res, a, b);
NTL_OPT_RETURN(vec_RR, res);
}
vec_RR operator*(const vec_RR& a, const mat_RR& b)
{
vec_RR res;
mul_aux(res, a, b);
NTL_OPT_RETURN(vec_RR, res);
}
void inv(mat_RR& X, const mat_RR& A)
{
RR d;
inv(d, X, A);
if (d == 0) Error("inv: non-invertible matrix");
}
void power(mat_RR& X, const mat_RR& A, const ZZ& e)
{
if (A.NumRows() != A.NumCols()) Error("power: non-square matrix");
if (e == 0) {
ident(X, A.NumRows());
return;
}
mat_RR T1, T2;
long i, k;
k = NumBits(e);
T1 = A;
for (i = k-2; i >= 0; i--) {
sqr(T2, T1);
if (bit(e, i))
mul(T1, T2, A);
else
T1 = T2;
}
if (e < 0)
inv(X, T1);
else
X = T1;
}
NTL_END_IMPL
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -