?? mat_zz.cpp
字號:
#include <NTL/mat_ZZ.h>
#include <NTL/new.h>
NTL_START_IMPL
NTL_matrix_impl(ZZ,vec_ZZ,vec_vec_ZZ,mat_ZZ)
NTL_io_matrix_impl(ZZ,vec_ZZ,vec_vec_ZZ,mat_ZZ)
NTL_eq_matrix_impl(ZZ,vec_ZZ,vec_vec_ZZ,mat_ZZ)
void add(mat_ZZ& X, const mat_ZZ& A, const mat_ZZ& B)
{
long n = A.NumRows();
long m = A.NumCols();
if (B.NumRows() != n || B.NumCols() != m)
Error("matrix add: dimension mismatch");
X.SetDims(n, m);
long i, j;
for (i = 1; i <= n; i++)
for (j = 1; j <= m; j++)
add(X(i,j), A(i,j), B(i,j));
}
void sub(mat_ZZ& X, const mat_ZZ& A, const mat_ZZ& B)
{
long n = A.NumRows();
long m = A.NumCols();
if (B.NumRows() != n || B.NumCols() != m)
Error("matrix sub: dimension mismatch");
X.SetDims(n, m);
long i, j;
for (i = 1; i <= n; i++)
for (j = 1; j <= m; j++)
sub(X(i,j), A(i,j), B(i,j));
}
void mul_aux(mat_ZZ& X, const mat_ZZ& A, const mat_ZZ& B)
{
long n = A.NumRows();
long l = A.NumCols();
long m = B.NumCols();
if (l != B.NumRows())
Error("matrix mul: dimension mismatch");
X.SetDims(n, m);
long i, j, k;
ZZ acc, tmp;
for (i = 1; i <= n; i++) {
for (j = 1; j <= m; j++) {
clear(acc);
for(k = 1; k <= l; k++) {
mul(tmp, A(i,k), B(k,j));
add(acc, acc, tmp);
}
X(i,j) = acc;
}
}
}
void mul(mat_ZZ& X, const mat_ZZ& A, const mat_ZZ& B)
{
if (&X == &A || &X == &B) {
mat_ZZ tmp;
mul_aux(tmp, A, B);
X = tmp;
}
else
mul_aux(X, A, B);
}
static
void mul_aux(vec_ZZ& x, const mat_ZZ& A, const vec_ZZ& b)
{
long n = A.NumRows();
long l = A.NumCols();
if (l != b.length())
Error("matrix mul: dimension mismatch");
x.SetLength(n);
long i, k;
ZZ acc, tmp;
for (i = 1; i <= n; i++) {
clear(acc);
for (k = 1; k <= l; k++) {
mul(tmp, A(i,k), b(k));
add(acc, acc, tmp);
}
x(i) = acc;
}
}
void mul(vec_ZZ& x, const mat_ZZ& A, const vec_ZZ& b)
{
if (&b == &x || A.position1(x) != -1) {
vec_ZZ tmp;
mul_aux(tmp, A, b);
x = tmp;
}
else
mul_aux(x, A, b);
}
static
void mul_aux(vec_ZZ& x, const vec_ZZ& a, const mat_ZZ& B)
{
long n = B.NumRows();
long l = B.NumCols();
if (n != a.length())
Error("matrix mul: dimension mismatch");
x.SetLength(l);
long i, k;
ZZ acc, tmp;
for (i = 1; i <= l; i++) {
clear(acc);
for (k = 1; k <= n; k++) {
mul(tmp, a(k), B(k,i));
add(acc, acc, tmp);
}
x(i) = acc;
}
}
void mul(vec_ZZ& x, const vec_ZZ& a, const mat_ZZ& B)
{
if (&a == &x) {
vec_ZZ tmp;
mul_aux(tmp, a, B);
x = tmp;
}
else
mul_aux(x, a, B);
}
void ident(mat_ZZ& X, long n)
{
X.SetDims(n, n);
long i, j;
for (i = 1; i <= n; i++)
for (j = 1; j <= n; j++)
if (i == j)
set(X(i, j));
else
clear(X(i, j));
}
static
long DetBound(const mat_ZZ& a)
{
long n = a.NumRows();
long i;
ZZ res, t1;
set(res);
for (i = 0; i < n; i++) {
InnerProduct(t1, a[i], a[i]);
if (t1 > 1) {
SqrRoot(t1, t1);
add(t1, t1, 1);
}
mul(res, res, t1);
}
return NumBits(res);
}
void determinant(ZZ& rres, const mat_ZZ& a, long deterministic)
{
long n = a.NumRows();
if (a.NumCols() != n)
Error("determinant: nonsquare matrix");
if (n == 0) {
set(rres);
return;
}
zz_pBak zbak;
zbak.save();
ZZ_pBak Zbak;
Zbak.save();
long instable = 1;
long gp_cnt = 0;
long bound = 2+DetBound(a);
ZZ res, prod;
clear(res);
set(prod);
long i;
for (i = 0; ; i++) {
if (NumBits(prod) > bound)
break;
if (!deterministic &&
!instable && bound > 1000 && NumBits(prod) < 0.25*bound) {
ZZ P;
long plen = 90 + NumBits(max(bound, NumBits(res)));
GenPrime(P, plen, 90 + 2*NumBits(gp_cnt++));
ZZ_p::init(P);
mat_ZZ_p A;
conv(A, a);
ZZ_p t;
determinant(t, A);
if (CRT(res, prod, rep(t), P))
instable = 1;
else
break;
}
zz_p::FFTInit(i);
long p = zz_p::modulus();
mat_zz_p A;
conv(A, a);
zz_p t;
determinant(t, A);
instable = CRT(res, prod, rep(t), p);
}
rres = res;
zbak.restore();
Zbak.restore();
}
void conv(mat_zz_p& x, const mat_ZZ& a)
{
long n = a.NumRows();
long m = a.NumCols();
long i;
x.SetDims(n, m);
for (i = 0; i < n; i++)
conv(x[i], a[i]);
}
void conv(mat_ZZ_p& x, const mat_ZZ& a)
{
long n = a.NumRows();
long m = a.NumCols();
long i;
x.SetDims(n, m);
for (i = 0; i < n; i++)
conv(x[i], a[i]);
}
long IsIdent(const mat_ZZ& A, long n)
{
if (A.NumRows() != n || A.NumCols() != n)
return 0;
long i, j;
for (i = 1; i <= n; i++)
for (j = 1; j <= n; j++)
if (i != j) {
if (!IsZero(A(i, j))) return 0;
}
else {
if (!IsOne(A(i, j))) return 0;
}
return 1;
}
void transpose(mat_ZZ& X, const mat_ZZ& A)
{
long n = A.NumRows();
long m = A.NumCols();
long i, j;
if (&X == & A) {
if (n == m)
for (i = 1; i <= n; i++)
for (j = i+1; j <= n; j++)
swap(X(i, j), X(j, i));
else {
mat_ZZ tmp;
tmp.SetDims(m, n);
for (i = 1; i <= n; i++)
for (j = 1; j <= m; j++)
tmp(j, i) = A(i, j);
X.kill();
X = tmp;
}
}
else {
X.SetDims(m, n);
for (i = 1; i <= n; i++)
for (j = 1; j <= m; j++)
X(j, i) = A(i, j);
}
}
long CRT(mat_ZZ& gg, ZZ& a, const mat_zz_p& G)
{
long n = gg.NumRows();
long m = gg.NumCols();
if (G.NumRows() != n || G.NumCols() != m)
Error("CRT: dimension mismatch");
long p = zz_p::modulus();
ZZ new_a;
mul(new_a, a, p);
long a_inv;
a_inv = rem(a, p);
a_inv = InvMod(a_inv, p);
long p1;
p1 = p >> 1;
ZZ a1;
RightShift(a1, a, 1);
long p_odd = (p & 1);
long modified = 0;
long h;
ZZ ah;
ZZ g;
long i, j;
for (i = 0; i < n; i++) {
for (j = 0; j < m; j++) {
if (!CRTInRange(gg[i][j], a)) {
modified = 1;
rem(g, gg[i][j], a);
if (g > a1) sub(g, g, a);
}
else
g = gg[i][j];
h = rem(g, p);
h = SubMod(rep(G[i][j]), h, p);
h = MulMod(h, a_inv, p);
if (h > p1)
h = h - p;
if (h != 0) {
modified = 1;
mul(ah, a, h);
if (!p_odd && g > 0 && (h == p1))
sub(g, g, ah);
else
add(g, g, ah);
}
gg[i][j] = g;
}
}
a = new_a;
return modified;
}
void mul(mat_ZZ& X, const mat_ZZ& A, const ZZ& b_in)
{
ZZ b = b_in;
long n = A.NumRows();
long m = A.NumCols();
X.SetDims(n, m);
long i, j;
for (i = 0; i < n; i++)
for (j = 0; j < m; j++)
mul(X[i][j], A[i][j], b);
}
void mul(mat_ZZ& X, const mat_ZZ& A, long b)
{
long n = A.NumRows();
long m = A.NumCols();
X.SetDims(n, m);
long i, j;
for (i = 0; i < n; i++)
for (j = 0; j < m; j++)
mul(X[i][j], A[i][j], b);
}
static
void ExactDiv(vec_ZZ& x, const ZZ& d)
{
long n = x.length();
long i;
for (i = 0; i < n; i++)
if (!divide(x[i], x[i], d))
Error("inexact division");
}
static
void ExactDiv(mat_ZZ& x, const ZZ& d)
{
long n = x.NumRows();
long m = x.NumCols();
long i, j;
for (i = 0; i < n; i++)
for (j = 0; j < m; j++)
if (!divide(x[i][j], x[i][j], d))
Error("inexact division");
}
void diag(mat_ZZ& X, long n, const ZZ& d_in)
{
ZZ d = d_in;
X.SetDims(n, n);
long i, j;
for (i = 1; i <= n; i++)
for (j = 1; j <= n; j++)
if (i == j)
X(i, j) = d;
else
clear(X(i, j));
}
long IsDiag(const mat_ZZ& A, long n, const ZZ& d)
{
if (A.NumRows() != n || A.NumCols() != n)
return 0;
long i, j;
for (i = 1; i <= n; i++)
for (j = 1; j <= n; j++)
if (i != j) {
if (!IsZero(A(i, j))) return 0;
}
else {
if (A(i, j) != d) return 0;
}
return 1;
}
void solve(ZZ& d_out, vec_ZZ& x_out,
const mat_ZZ& A, const vec_ZZ& b,
long deterministic)
{
long n = A.NumRows();
if (A.NumCols() != n)
Error("solve: nonsquare matrix");
if (b.length() != n)
Error("solve: dimension mismatch");
if (n == 0) {
set(d_out);
x_out.SetLength(0);
return;
}
zz_pBak zbak;
zbak.save();
ZZ_pBak Zbak;
Zbak.save();
vec_ZZ x(INIT_SIZE, n);
ZZ d, d1;
ZZ d_prod, x_prod;
set(d_prod);
set(x_prod);
long d_instable = 1;
long x_instable = 1;
long check = 0;
long gp_cnt = 0;
vec_ZZ y, b1;
long i;
long bound = 2+DetBound(A);
for (i = 0; ; i++) {
if ((check || IsZero(d)) && !d_instable) {
if (NumBits(d_prod) > bound) {
break;
}
else if (!deterministic &&
bound > 1000 && NumBits(d_prod) < 0.25*bound) {
ZZ P;
long plen = 90 + NumBits(max(bound, NumBits(d)));
GenPrime(P, plen, 90 + 2*NumBits(gp_cnt++));
ZZ_p::init(P);
mat_ZZ_p AA;
conv(AA, A);
ZZ_p dd;
determinant(dd, AA);
if (CRT(d, d_prod, rep(dd), P))
d_instable = 1;
else
break;
}
}
zz_p::FFTInit(i);
long p = zz_p::modulus();
mat_zz_p AA;
conv(AA, A);
if (!check) {
vec_zz_p bb, xx;
conv(bb, b);
zz_p dd;
solve(dd, xx, AA, bb);
d_instable = CRT(d, d_prod, rep(dd), p);
if (!IsZero(dd)) {
mul(xx, xx, dd);
x_instable = CRT(x, x_prod, xx);
}
else
x_instable = 1;
if (!d_instable && !x_instable) {
mul(y, x, A);
mul(b1, b, d);
if (y == b1) {
d1 = d;
check = 1;
}
}
}
else {
zz_p dd;
determinant(dd, AA);
d_instable = CRT(d, d_prod, rep(dd), p);
}
}
if (check && d1 != d) {
mul(x, x, d);
ExactDiv(x, d1);
}
d_out = d;
if (check) x_out = x;
zbak.restore();
Zbak.restore();
}
void inv(ZZ& d_out, mat_ZZ& x_out, const mat_ZZ& A, long deterministic)
{
long n = A.NumRows();
if (A.NumCols() != n)
Error("solve: nonsquare matrix");
if (n == 0) {
set(d_out);
x_out.SetDims(0, 0);
return;
}
zz_pBak zbak;
zbak.save();
ZZ_pBak Zbak;
Zbak.save();
mat_ZZ x(INIT_SIZE, n, n);
ZZ d, d1;
ZZ d_prod, x_prod;
set(d_prod);
set(x_prod);
long d_instable = 1;
long x_instable = 1;
long gp_cnt = 0;
long check = 0;
mat_ZZ y;
long i;
long bound = 2+DetBound(A);
for (i = 0; ; i++) {
if ((check || IsZero(d)) && !d_instable) {
if (NumBits(d_prod) > bound) {
break;
}
else if (!deterministic &&
bound > 1000 && NumBits(d_prod) < 0.25*bound) {
ZZ P;
long plen = 90 + NumBits(max(bound, NumBits(d)));
GenPrime(P, plen, 90 + 2*NumBits(gp_cnt++));
ZZ_p::init(P);
mat_ZZ_p AA;
conv(AA, A);
ZZ_p dd;
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -