?? mat_lzz_p.cpp
字號:
#include <NTL/mat_lzz_p.h>
#include <NTL/new.h>
#include <NTL/vec_long.h>
#include <NTL/vec_ulong.h>
#include <NTL/vec_double.h>
NTL_START_IMPL
NTL_matrix_impl(zz_p,vec_zz_p,vec_vec_zz_p,mat_zz_p)
NTL_io_matrix_impl(zz_p,vec_zz_p,vec_vec_zz_p,mat_zz_p)
NTL_eq_matrix_impl(zz_p,vec_zz_p,vec_vec_zz_p,mat_zz_p)
void add(mat_zz_p& X, const mat_zz_p& A, const mat_zz_p& B)
{
long n = A.NumRows();
long m = A.NumCols();
if (B.NumRows() != n || B.NumCols() != m)
Error("matrix add: dimension mismatch");
X.SetDims(n, m);
long i, j;
for (i = 1; i <= n; i++)
for (j = 1; j <= m; j++)
add(X(i,j), A(i,j), B(i,j));
}
void sub(mat_zz_p& X, const mat_zz_p& A, const mat_zz_p& B)
{
long n = A.NumRows();
long m = A.NumCols();
if (B.NumRows() != n || B.NumCols() != m)
Error("matrix sub: dimension mismatch");
X.SetDims(n, m);
long i, j;
for (i = 1; i <= n; i++)
for (j = 1; j <= m; j++)
sub(X(i,j), A(i,j), B(i,j));
}
static vec_long mul_aux_vec;
static NTL_SPMM_VEC_T precon_vec;
static
void mul_aux(mat_zz_p& X, const mat_zz_p& A, const mat_zz_p& B)
{
long n = A.NumRows();
long l = A.NumCols();
long m = B.NumCols();
if (l != B.NumRows())
Error("matrix mul: dimension mismatch");
X.SetDims(n, m);
if (m > 1) { // new preconditioning code
long p = zz_p::modulus();
double pinv = zz_p::ModulusInverse();
mul_aux_vec.SetLength(m);
long *acc = mul_aux_vec.elts();
long i, j, k;
for (i = 0; i < n; i++) {
const zz_p* ap = A[i].elts();
for (j = 0; j < m; j++) acc[j] = 0;
for (k = 0; k < l; k++) {
long aa = rep(ap[k]);
if (aa != 0) {
const zz_p* bp = B[k].elts();
long T1;
mulmod_precon_t aapinv = PrepMulModPrecon(aa, p, pinv);
for (j = 0; j < m; j++) {
T1 = MulModPrecon(rep(bp[j]), aa, p, aapinv);
acc[j] = AddMod(acc[j], T1, p);
}
}
}
zz_p *xp = X[i].elts();
for (j = 0; j < m; j++)
xp[j].LoopHole() = acc[j];
}
}
else { // just use the old code, w/o preconditioning
long p = zz_p::modulus();
double pinv = zz_p::ModulusInverse();
long i, j, k;
long acc, tmp;
for (i = 1; i <= n; i++) {
for (j = 1; j <= m; j++) {
acc = 0;
for(k = 1; k <= l; k++) {
tmp = MulMod(rep(A(i,k)), rep(B(k,j)), p, pinv);
acc = AddMod(acc, tmp, p);
}
X(i,j).LoopHole() = acc;
}
}
}
}
void mul(mat_zz_p& X, const mat_zz_p& A, const mat_zz_p& B)
{
if (&X == &A || &X == &B) {
mat_zz_p tmp;
mul_aux(tmp, A, B);
X = tmp;
}
else
mul_aux(X, A, B);
}
void mul(vec_zz_p& x, const vec_zz_p& a, const mat_zz_p& B)
{
long l = a.length();
long m = B.NumCols();
if (l != B.NumRows())
Error("matrix mul: dimension mismatch");
if (m == 0) {
x.SetLength(0);
}
else if (m == 1) {
long p = zz_p::modulus();
double pinv = zz_p::ModulusInverse();
long acc, tmp;
long k;
acc = 0;
for(k = 1; k <= l; k++) {
tmp = MulMod(rep(a(k)), rep(B(k,1)), p, pinv);
acc = AddMod(acc, tmp, p);
}
x.SetLength(1);
x(1).LoopHole() = acc;
}
else { // m > 1. precondition
long p = zz_p::modulus();
double pinv = zz_p::ModulusInverse();
mul_aux_vec.SetLength(m);
long *acc = mul_aux_vec.elts();
long j, k;
const zz_p* ap = a.elts();
for (j = 0; j < m; j++) acc[j] = 0;
for (k = 0; k < l; k++) {
long aa = rep(ap[k]);
if (aa != 0) {
const zz_p* bp = B[k].elts();
long T1;
mulmod_precon_t aapinv = PrepMulModPrecon(aa, p, pinv);
for (j = 0; j < m; j++) {
T1 = MulModPrecon(rep(bp[j]), aa, p, aapinv);
acc[j] = AddMod(acc[j], T1, p);
}
}
}
x.SetLength(m);
zz_p *xp = x.elts();
for (j = 0; j < m; j++)
xp[j].LoopHole() = acc[j];
}
}
void mul_aux(vec_zz_p& x, const mat_zz_p& A, const vec_zz_p& b)
{
long n = A.NumRows();
long l = A.NumCols();
if (l != b.length())
Error("matrix mul: dimension mismatch");
x.SetLength(n);
zz_p* xp = x.elts();
long p = zz_p::modulus();
double pinv = zz_p::ModulusInverse();
long i, k;
long acc, tmp;
const zz_p* bp = b.elts();
if (n <= 1) {
for (i = 0; i < n; i++) {
acc = 0;
const zz_p* ap = A[i].elts();
for (k = 0; k < l; k++) {
tmp = MulMod(rep(ap[k]), rep(bp[k]), p, pinv);
acc = AddMod(acc, tmp, p);
}
xp[i].LoopHole() = acc;
}
}
else {
precon_vec.SetLength(l);
mulmod_precon_t *bpinv = precon_vec.elts();
for (k = 0; k < l; k++)
bpinv[k] = PrepMulModPrecon(rep(bp[k]), p, pinv);
for (i = 0; i < n; i++) {
acc = 0;
const zz_p* ap = A[i].elts();
for (k = 0; k < l; k++) {
tmp = MulModPrecon(rep(ap[k]), rep(bp[k]), p, bpinv[k]);
acc = AddMod(acc, tmp, p);
}
xp[i].LoopHole() = acc;
}
}
}
void mul(vec_zz_p& x, const mat_zz_p& A, const vec_zz_p& b)
{
if (&b == &x || A.position1(x) != -1) {
vec_zz_p tmp;
mul_aux(tmp, A, b);
x = tmp;
}
else
mul_aux(x, A, b);
}
void mul(mat_zz_p& X, const mat_zz_p& A, zz_p b)
{
long n = A.NumRows();
long m = A.NumCols();
X.SetDims(n, m);
long i, j;
if (n == 0 || m == 0 || (n == 1 && m == 1)) {
for (i = 0; i < n; i++)
for (j = 0; j < m; j++)
mul(X[i][j], A[i][j], b);
}
else {
long p = zz_p::modulus();
double pinv = zz_p::ModulusInverse();
long bb = rep(b);
mulmod_precon_t bpinv = PrepMulModPrecon(bb, p, pinv);
for (i = 0; i < n; i++) {
const zz_p *ap = A[i].elts();
zz_p *xp = X[i].elts();
for (j = 0; j < m; j++)
xp[j].LoopHole() = MulModPrecon(rep(ap[j]), bb, p, bpinv);
}
}
}
void mul(mat_zz_p& X, const mat_zz_p& A, long b_in)
{
zz_p b;
b = b_in;
mul(X, A, b);
}
void ident(mat_zz_p& X, long n)
{
X.SetDims(n, n);
long i, j;
for (i = 1; i <= n; i++)
for (j = 1; j <= n; j++)
if (i == j)
set(X(i, j));
else
clear(X(i, j));
}
void determinant(zz_p& d, const mat_zz_p& M_in)
{
long k, n;
long i, j;
long pos;
zz_p t1, t2, t3;
zz_p *x, *y;
mat_zz_p M;
M = M_in;
n = M.NumRows();
if (M.NumCols() != n)
Error("determinant: nonsquare matrix");
if (n == 0) {
set(d);
return;
}
zz_p det;
set(det);
long p = zz_p::modulus();
double pinv = zz_p::ModulusInverse();
for (k = 0; k < n; k++) {
pos = -1;
for (i = k; i < n; i++) {
if (!IsZero(M[i][k])) {
pos = i;
break;
}
}
if (pos != -1) {
if (k != pos) {
swap(M[pos], M[k]);
negate(det, det);
}
mul(det, det, M[k][k]);
inv(t3, M[k][k]);
for (i = k+1; i < n; i++) {
// M[i] = M[i] - M[k]*M[i,k]*t3
mul(t1, M[i][k], t3);
negate(t1, t1);
x = M[i].elts() + (k+1);
y = M[k].elts() + (k+1);
long T1 = rep(t1);
mulmod_precon_t t1pinv = PrepMulModPrecon(T1, p, pinv); // T1*pinv;
long T2;
for (j = k+1; j < n; j++, x++, y++) {
// *x = *x + (*y)*t1
T2 = MulModPrecon(rep(*y), T1, p, t1pinv);
x->LoopHole() = AddMod(rep(*x), T2, p);
}
}
}
else {
clear(d);
return;
}
}
d = det;
}
long IsIdent(const mat_zz_p& A, long n)
{
if (A.NumRows() != n || A.NumCols() != n)
return 0;
long i, j;
for (i = 1; i <= n; i++)
for (j = 1; j <= n; j++)
if (i != j) {
if (!IsZero(A(i, j))) return 0;
}
else {
if (!IsOne(A(i, j))) return 0;
}
return 1;
}
void transpose(mat_zz_p& X, const mat_zz_p& A)
{
long n = A.NumRows();
long m = A.NumCols();
long i, j;
if (&X == & A) {
if (n == m)
for (i = 1; i <= n; i++)
for (j = i+1; j <= n; j++)
swap(X(i, j), X(j, i));
else {
mat_zz_p tmp;
tmp.SetDims(m, n);
for (i = 1; i <= n; i++)
for (j = 1; j <= m; j++)
tmp(j, i) = A(i, j);
X.kill();
X = tmp;
}
}
else {
X.SetDims(m, n);
for (i = 1; i <= n; i++)
for (j = 1; j <= m; j++)
X(j, i) = A(i, j);
}
}
void solve(zz_p& d, vec_zz_p& X,
const mat_zz_p& A, const vec_zz_p& b)
{
long n = A.NumRows();
if (A.NumCols() != n)
Error("solve: nonsquare matrix");
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -