?? mat_lzz_p.cpp
字號:
if (b.length() != n)
Error("solve: dimension mismatch");
if (n == 0) {
set(d);
X.SetLength(0);
return;
}
long i, j, k, pos;
zz_p t1, t2, t3;
zz_p *x, *y;
mat_zz_p M;
M.SetDims(n, n+1);
for (i = 0; i < n; i++) {
for (j = 0; j < n; j++)
M[i][j] = A[j][i];
M[i][n] = b[i];
}
zz_p det;
set(det);
long p = zz_p::modulus();
double pinv = zz_p::ModulusInverse();
for (k = 0; k < n; k++) {
pos = -1;
for (i = k; i < n; i++) {
if (!IsZero(M[i][k])) {
pos = i;
break;
}
}
if (pos != -1) {
if (k != pos) {
swap(M[pos], M[k]);
negate(det, det);
}
mul(det, det, M[k][k]);
inv(t3, M[k][k]);
M[k][k] = t3;
for (i = k+1; i < n; i++) {
// M[i] = M[i] - M[k]*M[i,k]*t3
mul(t1, M[i][k], t3);
negate(t1, t1);
x = M[i].elts() + (k+1);
y = M[k].elts() + (k+1);
long T1 = rep(t1);
mulmod_precon_t t1pinv = PrepMulModPrecon(T1, p, pinv); // T1*pinv;
long T2;
for (j = k+1; j <= n; j++, x++, y++) {
// *x = *x + (*y)*t1
T2 = MulModPrecon(rep(*y), T1, p, t1pinv);
x->LoopHole() = AddMod(rep(*x), T2, p);
}
}
}
else {
clear(d);
return;
}
}
X.SetLength(n);
for (i = n-1; i >= 0; i--) {
clear(t1);
for (j = i+1; j < n; j++) {
mul(t2, X[j], M[i][j]);
add(t1, t1, t2);
}
sub(t1, M[i][n], t1);
mul(X[i], t1, M[i][i]);
}
d = det;
}
void inv(zz_p& d, mat_zz_p& X, const mat_zz_p& A)
{
long n = A.NumRows();
if (A.NumCols() != n)
Error("inv: nonsquare matrix");
if (n == 0) {
set(d);
X.SetDims(0, 0);
return;
}
long i, j, k, pos;
zz_p t1, t2, t3;
zz_p *x, *y;
mat_zz_p M;
M.SetDims(n, 2*n);
for (i = 0; i < n; i++) {
for (j = 0; j < n; j++) {
M[i][j] = A[i][j];
clear(M[i][n+j]);
}
set(M[i][n+i]);
}
zz_p det;
set(det);
long p = zz_p::modulus();
double pinv = zz_p::ModulusInverse();
for (k = 0; k < n; k++) {
pos = -1;
for (i = k; i < n; i++) {
if (!IsZero(M[i][k])) {
pos = i;
break;
}
}
if (pos != -1) {
if (k != pos) {
swap(M[pos], M[k]);
negate(det, det);
}
mul(det, det, M[k][k]);
inv(t3, M[k][k]);
M[k][k] = t3;
for (i = k+1; i < n; i++) {
// M[i] = M[i] - M[k]*M[i,k]*t3
mul(t1, M[i][k], t3);
negate(t1, t1);
x = M[i].elts() + (k+1);
y = M[k].elts() + (k+1);
long T1 = rep(t1);
mulmod_precon_t t1pinv = PrepMulModPrecon(T1, p, pinv); // T1*pinv;
long T2;
for (j = k+1; j < 2*n; j++, x++, y++) {
// *x = *x + (*y)*t1
T2 = MulModPrecon(rep(*y), T1, p, t1pinv);
x->LoopHole() = AddMod(rep(*x), T2, p);
}
}
}
else {
clear(d);
return;
}
}
X.SetDims(n, n);
for (k = 0; k < n; k++) {
for (i = n-1; i >= 0; i--) {
clear(t1);
for (j = i+1; j < n; j++) {
mul(t2, X[j][k], M[i][j]);
add(t1, t1, t2);
}
sub(t1, M[i][n+k], t1);
mul(X[i][k], t1, M[i][i]);
}
}
d = det;
}
long gauss(mat_zz_p& M, long w)
{
long k, l;
long i, j;
long pos;
zz_p t1, t2, t3;
zz_p *x, *y;
long n = M.NumRows();
long m = M.NumCols();
if (w < 0 || w > m)
Error("gauss: bad args");
long p = zz_p::modulus();
double pinv = zz_p::ModulusInverse();
long T1, T2;
l = 0;
for (k = 0; k < w && l < n; k++) {
pos = -1;
for (i = l; i < n; i++) {
if (!IsZero(M[i][k])) {
pos = i;
break;
}
}
if (pos != -1) {
swap(M[pos], M[l]);
inv(t3, M[l][k]);
negate(t3, t3);
for (i = l+1; i < n; i++) {
// M[i] = M[i] + M[l]*M[i,k]*t3
mul(t1, M[i][k], t3);
T1 = rep(t1);
mulmod_precon_t T1pinv = PrepMulModPrecon(T1, p, pinv); // ((double) T1)*pinv;
clear(M[i][k]);
x = M[i].elts() + (k+1);
y = M[l].elts() + (k+1);
for (j = k+1; j < m; j++, x++, y++) {
// *x = *x + (*y)*t1
T2 = MulModPrecon(rep(*y), T1, p, T1pinv);
T2 = AddMod(T2, rep(*x), p);
(*x).LoopHole() = T2;
}
}
l++;
}
}
return l;
}
long gauss(mat_zz_p& M)
{
return gauss(M, M.NumCols());
}
void image(mat_zz_p& X, const mat_zz_p& A)
{
mat_zz_p M;
M = A;
long r = gauss(M);
M.SetDims(r, M.NumCols());
X = M;
}
void kernel(mat_zz_p& X, const mat_zz_p& A)
{
long m = A.NumRows();
long n = A.NumCols();
mat_zz_p M;
long r;
transpose(M, A);
r = gauss(M);
X.SetDims(m-r, m);
long i, j, k, s;
zz_p t1, t2;
vec_long D;
D.SetLength(m);
for (j = 0; j < m; j++) D[j] = -1;
vec_zz_p inverses;
inverses.SetLength(m);
j = -1;
for (i = 0; i < r; i++) {
do {
j++;
} while (IsZero(M[i][j]));
D[j] = i;
inv(inverses[j], M[i][j]);
}
for (k = 0; k < m-r; k++) {
vec_zz_p& v = X[k];
long pos = 0;
for (j = m-1; j >= 0; j--) {
if (D[j] == -1) {
if (pos == k)
set(v[j]);
else
clear(v[j]);
pos++;
}
else {
i = D[j];
clear(t1);
for (s = j+1; s < m; s++) {
mul(t2, v[s], M[i][s]);
add(t1, t1, t2);
}
mul(t1, t1, inverses[j]);
negate(v[j], t1);
}
}
}
}
void diag(mat_zz_p& X, long n, zz_p d)
{
X.SetDims(n, n);
long i, j;
for (i = 1; i <= n; i++)
for (j = 1; j <= n; j++)
if (i == j)
X(i, j) = d;
else
clear(X(i, j));
}
long IsDiag(const mat_zz_p& A, long n, zz_p d)
{
if (A.NumRows() != n || A.NumCols() != n)
return 0;
long i, j;
for (i = 1; i <= n; i++)
for (j = 1; j <= n; j++)
if (i != j) {
if (!IsZero(A(i, j))) return 0;
}
else {
if (A(i, j) != d) return 0;
}
return 1;
}
void negate(mat_zz_p& X, const mat_zz_p& A)
{
long n = A.NumRows();
long m = A.NumCols();
X.SetDims(n, m);
long i, j;
for (i = 1; i <= n; i++)
for (j = 1; j <= m; j++)
negate(X(i,j), A(i,j));
}
long IsZero(const mat_zz_p& a)
{
long n = a.NumRows();
long i;
for (i = 0; i < n; i++)
if (!IsZero(a[i]))
return 0;
return 1;
}
void clear(mat_zz_p& x)
{
long n = x.NumRows();
long i;
for (i = 0; i < n; i++)
clear(x[i]);
}
mat_zz_p operator+(const mat_zz_p& a, const mat_zz_p& b)
{
mat_zz_p res;
add(res, a, b);
NTL_OPT_RETURN(mat_zz_p, res);
}
mat_zz_p operator*(const mat_zz_p& a, const mat_zz_p& b)
{
mat_zz_p res;
mul_aux(res, a, b);
NTL_OPT_RETURN(mat_zz_p, res);
}
mat_zz_p operator-(const mat_zz_p& a, const mat_zz_p& b)
{
mat_zz_p res;
sub(res, a, b);
NTL_OPT_RETURN(mat_zz_p, res);
}
mat_zz_p operator-(const mat_zz_p& a)
{
mat_zz_p res;
negate(res, a);
NTL_OPT_RETURN(mat_zz_p, res);
}
vec_zz_p operator*(const mat_zz_p& a, const vec_zz_p& b)
{
vec_zz_p res;
mul_aux(res, a, b);
NTL_OPT_RETURN(vec_zz_p, res);
}
vec_zz_p operator*(const vec_zz_p& a, const mat_zz_p& b)
{
vec_zz_p res;
mul(res, a, b);
NTL_OPT_RETURN(vec_zz_p, res);
}
void inv(mat_zz_p& X, const mat_zz_p& A)
{
zz_p d;
inv(d, X, A);
if (d == 0) Error("inv: non-invertible matrix");
}
void power(mat_zz_p& X, const mat_zz_p& A, const ZZ& e)
{
if (A.NumRows() != A.NumCols()) Error("power: non-square matrix");
if (e == 0) {
ident(X, A.NumRows());
return;
}
mat_zz_p T1, T2;
long i, k;
k = NumBits(e);
T1 = A;
for (i = k-2; i >= 0; i--) {
sqr(T2, T1);
if (bit(e, i))
mul(T1, T2, A);
else
T1 = T2;
}
if (e < 0)
inv(X, T1);
else
X = T1;
}
NTL_END_IMPL
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -