?? zz_px1.cpp
字號:
#include <NTL/ZZ_pX.h>
#include <NTL/new.h>
NTL_START_IMPL
long divide(ZZ_pX& q, const ZZ_pX& a, const ZZ_pX& b)
{
if (IsZero(b)) {
if (IsZero(a)) {
clear(q);
return 1;
}
else
return 0;
}
ZZ_pX lq, r;
DivRem(lq, r, a, b);
if (!IsZero(r)) return 0;
q = lq;
return 1;
}
long divide(const ZZ_pX& a, const ZZ_pX& b)
{
if (IsZero(b)) return IsZero(a);
ZZ_pX lq, r;
DivRem(lq, r, a, b);
if (!IsZero(r)) return 0;
return 1;
}
void ZZ_pXMatrix::operator=(const ZZ_pXMatrix& M)
{
elts[0][0] = M.elts[0][0];
elts[0][1] = M.elts[0][1];
elts[1][0] = M.elts[1][0];
elts[1][1] = M.elts[1][1];
}
void RightShift(ZZ_pX& x, const ZZ_pX& a, long n)
{
if (IsZero(a)) {
clear(x);
return;
}
if (n < 0) {
if (n < -NTL_MAX_LONG) Error("overflow in RightShift");
LeftShift(x, a, -n);
return;
}
long da = deg(a);
long i;
if (da < n) {
clear(x);
return;
}
if (&x != &a)
x.rep.SetLength(da-n+1);
for (i = 0; i <= da-n; i++)
x.rep[i] = a.rep[i+n];
if (&x == &a)
x.rep.SetLength(da-n+1);
x.normalize();
}
void LeftShift(ZZ_pX& x, const ZZ_pX& a, long n)
{
if (IsZero(a)) {
clear(x);
return;
}
if (n < 0) {
if (n < -NTL_MAX_LONG)
clear(x);
else
RightShift(x, a, -n);
return;
}
if (NTL_OVERFLOW(n, 1, 0))
Error("overflow in LeftShift");
long m = a.rep.length();
x.rep.SetLength(m+n);
long i;
for (i = m-1; i >= 0; i--)
x.rep[i+n] = a.rep[i];
for (i = 0; i < n; i++)
clear(x.rep[i]);
}
void ShiftAdd(ZZ_pX& U, const ZZ_pX& V, long n)
// assumes input does not alias output
{
if (IsZero(V))
return;
long du = deg(U);
long dv = deg(V);
long d = max(du, n+dv);
U.rep.SetLength(d+1);
long i;
for (i = du+1; i <= d; i++)
clear(U.rep[i]);
for (i = 0; i <= dv; i++)
add(U.rep[i+n], U.rep[i+n], V.rep[i]);
U.normalize();
}
void ShiftSub(ZZ_pX& U, const ZZ_pX& V, long n)
// assumes input does not alias output
{
if (IsZero(V))
return;
long du = deg(U);
long dv = deg(V);
long d = max(du, n+dv);
U.rep.SetLength(d+1);
long i;
for (i = du+1; i <= d; i++)
clear(U.rep[i]);
for (i = 0; i <= dv; i++)
sub(U.rep[i+n], U.rep[i+n], V.rep[i]);
U.normalize();
}
void mul(ZZ_pX& U, ZZ_pX& V, const ZZ_pXMatrix& M)
// (U, V)^T = M*(U, V)^T
{
long d = deg(U) - deg(M(1,1));
long k = NextPowerOfTwo(d - 1);
// When the GCD algorithm is run on polynomials of degree n, n-1,
// where n is a power of two, then d-1 is likely to be a power of two.
// It would be more natural to set k = NextPowerOfTwo(d+1), but this
// would be much less efficient in this case.
// We optimize this case, as it does sometimes arise naturally
// in some situations.
long n = (1L << k);
long xx;
ZZ_p a0, a1, b0, b1, c0, d0, u0, u1, v0, v1, nu0, nu1, nv0;
static ZZ t1, t2;
if (n == d-1)
xx = 1;
else if (n == d)
xx = 2;
else
xx = 3;
switch (xx) {
case 1:
GetCoeff(a0, M(0,0), 0);
GetCoeff(a1, M(0,0), 1);
GetCoeff(b0, M(0,1), 0);
GetCoeff(b1, M(0,1), 1);
GetCoeff(c0, M(1,0), 0);
GetCoeff(d0, M(1,1), 0);
GetCoeff(u0, U, 0);
GetCoeff(u1, U, 1);
GetCoeff(v0, V, 0);
GetCoeff(v1, V, 1);
mul(t1, rep(a0), rep(u0));
mul(t2, rep(b0), rep(v0));
add(t1, t1, t2);
conv(nu0, t1);
mul(t1, rep(a1), rep(u0));
mul(t2, rep(a0), rep(u1));
add(t1, t1, t2);
mul(t2, rep(b1), rep(v0));
add(t1, t1, t2);
mul(t2, rep(b0), rep(v1));
add(t1, t1, t2);
conv(nu1, t1);
mul(t1, rep(c0), rep(u0));
mul(t2, rep(d0), rep(v0));
add (t1, t1, t2);
conv(nv0, t1);
break;
case 2:
GetCoeff(a0, M(0,0), 0);
GetCoeff(b0, M(0,1), 0);
GetCoeff(u0, U, 0);
GetCoeff(v0, V, 0);
mul(t1, rep(a0), rep(u0));
mul(t2, rep(b0), rep(v0));
add(t1, t1, t2);
conv(nu0, t1);
break;
case 3:
break;
}
FFTRep RU(INIT_SIZE, k), RV(INIT_SIZE, k), R1(INIT_SIZE, k),
R2(INIT_SIZE, k);
ToFFTRep(RU, U, k);
ToFFTRep(RV, V, k);
ToFFTRep(R1, M(0,0), k);
mul(R1, R1, RU);
ToFFTRep(R2, M(0,1), k);
mul(R2, R2, RV);
add(R1, R1, R2);
FromFFTRep(U, R1, 0, d);
ToFFTRep(R1, M(1,0), k);
mul(R1, R1, RU);
ToFFTRep(R2, M(1,1), k);
mul(R2, R2, RV);
add(R1, R1, R2);
FromFFTRep(V, R1, 0, d-1);
// now fix-up results
switch (xx) {
case 1:
GetCoeff(u0, U, 0);
sub(u0, u0, nu0);
SetCoeff(U, d-1, u0);
SetCoeff(U, 0, nu0);
GetCoeff(u1, U, 1);
sub(u1, u1, nu1);
SetCoeff(U, d, u1);
SetCoeff(U, 1, nu1);
GetCoeff(v0, V, 0);
sub(v0, v0, nv0);
SetCoeff(V, d-1, v0);
SetCoeff(V, 0, nv0);
break;
case 2:
GetCoeff(u0, U, 0);
sub(u0, u0, nu0);
SetCoeff(U, d, u0);
SetCoeff(U, 0, nu0);
break;
}
}
void mul(ZZ_pXMatrix& A, ZZ_pXMatrix& B, ZZ_pXMatrix& C)
// A = B*C, B and C are destroyed
{
long db = deg(B(1,1));
long dc = deg(C(1,1));
long da = db + dc;
long k = NextPowerOfTwo(da+1);
FFTRep B00, B01, B10, B11, C0, C1, T1, T2;
ToFFTRep(B00, B(0,0), k); B(0,0).kill();
ToFFTRep(B01, B(0,1), k); B(0,1).kill();
ToFFTRep(B10, B(1,0), k); B(1,0).kill();
ToFFTRep(B11, B(1,1), k); B(1,1).kill();
ToFFTRep(C0, C(0,0), k); C(0,0).kill();
ToFFTRep(C1, C(1,0), k); C(1,0).kill();
mul(T1, B00, C0);
mul(T2, B01, C1);
add(T1, T1, T2);
FromFFTRep(A(0,0), T1, 0, da);
mul(T1, B10, C0);
mul(T2, B11, C1);
add(T1, T1, T2);
FromFFTRep(A(1,0), T1, 0, da);
ToFFTRep(C0, C(0,1), k); C(0,1).kill();
ToFFTRep(C1, C(1,1), k); C(1,1).kill();
mul(T1, B00, C0);
mul(T2, B01, C1);
add(T1, T1, T2);
FromFFTRep(A(0,1), T1, 0, da);
mul(T1, B10, C0);
mul(T2, B11, C1);
add(T1, T1, T2);
FromFFTRep(A(1,1), T1, 0, da);
}
void IterHalfGCD(ZZ_pXMatrix& M_out, ZZ_pX& U, ZZ_pX& V, long d_red)
{
M_out(0,0).SetMaxLength(d_red);
M_out(0,1).SetMaxLength(d_red);
M_out(1,0).SetMaxLength(d_red);
M_out(1,1).SetMaxLength(d_red);
set(M_out(0,0)); clear(M_out(0,1));
clear(M_out(1,0)); set(M_out(1,1));
long goal = deg(U) - d_red;
if (deg(V) <= goal)
return;
ZZVec tmp(deg(U)+1, ZZ_pInfo->ExtendedModulusSize);
ZZ_pX Q, t(INIT_SIZE, d_red);
while (deg(V) > goal) {
PlainDivRem(Q, U, U, V, tmp);
swap(U, V);
mul(t, Q, M_out(1,0));
sub(t, M_out(0,0), t);
M_out(0,0) = M_out(1,0);
M_out(1,0) = t;
mul(t, Q, M_out(1,1));
sub(t, M_out(0,1), t);
M_out(0,1) = M_out(1,1);
M_out(1,1) = t;
}
}
void HalfGCD(ZZ_pXMatrix& M_out, const ZZ_pX& U, const ZZ_pX& V, long d_red)
{
if (IsZero(V) || deg(V) <= deg(U) - d_red) {
set(M_out(0,0)); clear(M_out(0,1));
clear(M_out(1,0)); set(M_out(1,1));
return;
}
long n = deg(U) - 2*d_red + 2;
if (n < 0) n = 0;
ZZ_pX U1, V1;
RightShift(U1, U, n);
RightShift(V1, V, n);
if (d_red <= NTL_ZZ_pX_HalfGCD_CROSSOVER) {
IterHalfGCD(M_out, U1, V1, d_red);
return;
}
long d1 = (d_red + 1)/2;
if (d1 < 1) d1 = 1;
if (d1 >= d_red) d1 = d_red - 1;
ZZ_pXMatrix M1;
HalfGCD(M1, U1, V1, d1);
mul(U1, V1, M1);
long d2 = deg(V1) - deg(U) + n + d_red;
if (IsZero(V1) || d2 <= 0) {
M_out = M1;
return;
}
ZZ_pX Q;
ZZ_pXMatrix M2;
DivRem(Q, U1, U1, V1);
swap(U1, V1);
HalfGCD(M2, U1, V1, d2);
ZZ_pX t(INIT_SIZE, deg(M1(1,1))+deg(Q)+1);
mul(t, Q, M1(1,0));
sub(t, M1(0,0), t);
swap(M1(0,0), M1(1,0));
swap(M1(1,0), t);
t.kill();
t.SetMaxLength(deg(M1(1,1))+deg(Q)+1);
mul(t, Q, M1(1,1));
sub(t, M1(0,1), t);
swap(M1(0,1), M1(1,1));
swap(M1(1,1), t);
t.kill();
mul(M_out, M2, M1);
}
void XHalfGCD(ZZ_pXMatrix& M_out, ZZ_pX& U, ZZ_pX& V, long d_red)
{
if (IsZero(V) || deg(V) <= deg(U) - d_red) {
set(M_out(0,0)); clear(M_out(0,1));
clear(M_out(1,0)); set(M_out(1,1));
return;
}
long du = deg(U);
if (d_red <= NTL_ZZ_pX_HalfGCD_CROSSOVER) {
IterHalfGCD(M_out, U, V, d_red);
return;
}
long d1 = (d_red + 1)/2;
if (d1 < 1) d1 = 1;
if (d1 >= d_red) d1 = d_red - 1;
ZZ_pXMatrix M1;
HalfGCD(M1, U, V, d1);
mul(U, V, M1);
long d2 = deg(V) - du + d_red;
if (IsZero(V) || d2 <= 0) {
M_out = M1;
return;
}
ZZ_pX Q;
ZZ_pXMatrix M2;
DivRem(Q, U, U, V);
swap(U, V);
XHalfGCD(M2, U, V, d2);
ZZ_pX t(INIT_SIZE, deg(M1(1,1))+deg(Q)+1);
mul(t, Q, M1(1,0));
sub(t, M1(0,0), t);
swap(M1(0,0), M1(1,0));
swap(M1(1,0), t);
t.kill();
t.SetMaxLength(deg(M1(1,1))+deg(Q)+1);
mul(t, Q, M1(1,1));
sub(t, M1(0,1), t);
swap(M1(0,1), M1(1,1));
swap(M1(1,1), t);
t.kill();
mul(M_out, M2, M1);
}
void HalfGCD(ZZ_pX& U, ZZ_pX& V)
{
long d_red = (deg(U)+1)/2;
if (IsZero(V) || deg(V) <= deg(U) - d_red) {
return;
}
long du = deg(U);
long d1 = (d_red + 1)/2;
if (d1 < 1) d1 = 1;
if (d1 >= d_red) d1 = d_red - 1;
ZZ_pXMatrix M1;
HalfGCD(M1, U, V, d1);
mul(U, V, M1);
long d2 = deg(V) - du + d_red;
if (IsZero(V) || d2 <= 0) {
return;
}
M1(0,0).kill();
M1(0,1).kill();
M1(1,0).kill();
M1(1,1).kill();
ZZ_pX Q;
DivRem(Q, U, U, V);
swap(U, V);
HalfGCD(M1, U, V, d2);
mul(U, V, M1);
}
void GCD(ZZ_pX& d, const ZZ_pX& u, const ZZ_pX& v)
{
ZZ_pX u1, v1;
u1 = u;
v1 = v;
if (deg(u1) == deg(v1)) {
if (IsZero(u1)) {
clear(d);
return;
}
rem(v1, v1, u1);
}
else if (deg(u1) < deg(v1)) {
swap(u1, v1);
}
// deg(u1) > deg(v1)
while (deg(u1) > NTL_ZZ_pX_GCD_CROSSOVER && !IsZero(v1)) {
HalfGCD(u1, v1);
if (!IsZero(v1)) {
rem(u1, u1, v1);
swap(u1, v1);
}
}
PlainGCD(d, u1, v1);
}
void XGCD(ZZ_pX& d, ZZ_pX& s, ZZ_pX& t, const ZZ_pX& a, const ZZ_pX& b)
{
ZZ_p w;
if (IsZero(a) && IsZero(b)) {
clear(d);
set(s);
clear(t);
return;
}
ZZ_pX U, V, Q;
U = a;
V = b;
long flag = 0;
if (deg(U) == deg(V)) {
DivRem(Q, U, U, V);
swap(U, V);
flag = 1;
}
else if (deg(U) < deg(V)) {
swap(U, V);
flag = 2;
}
ZZ_pXMatrix M;
XHalfGCD(M, U, V, deg(U)+1);
d = U;
if (flag == 0) {
s = M(0,0);
t = M(0,1);
}
else if (flag == 1) {
s = M(0,1);
mul(t, Q, M(0,1));
sub(t, M(0,0), t);
}
else { /* flag == 2 */
s = M(0,1);
t = M(0,0);
}
// normalize
inv(w, LeadCoeff(d));
mul(d, d, w);
mul(s, s, w);
mul(t, t, w);
}
void IterBuild(ZZ_p* a, long n)
{
long i, k;
ZZ_p b, t;
if (n <= 0) return;
negate(a[0], a[0]);
for (k = 1; k <= n-1; k++) {
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -