?? mat_zz_p.cpp
字號:
#include <NTL/mat_ZZ_p.h>
#include <NTL/vec_ZZVec.h>
#include <NTL/vec_long.h>
#include <NTL/new.h>
NTL_START_IMPL
NTL_matrix_impl(ZZ_p,vec_ZZ_p,vec_vec_ZZ_p,mat_ZZ_p)
NTL_io_matrix_impl(ZZ_p,vec_ZZ_p,vec_vec_ZZ_p,mat_ZZ_p)
NTL_eq_matrix_impl(ZZ_p,vec_ZZ_p,vec_vec_ZZ_p,mat_ZZ_p)
void add(mat_ZZ_p& X, const mat_ZZ_p& A, const mat_ZZ_p& B)
{
long n = A.NumRows();
long m = A.NumCols();
if (B.NumRows() != n || B.NumCols() != m)
Error("matrix add: dimension mismatch");
X.SetDims(n, m);
long i, j;
for (i = 1; i <= n; i++)
for (j = 1; j <= m; j++)
add(X(i,j), A(i,j), B(i,j));
}
void sub(mat_ZZ_p& X, const mat_ZZ_p& A, const mat_ZZ_p& B)
{
long n = A.NumRows();
long m = A.NumCols();
if (B.NumRows() != n || B.NumCols() != m)
Error("matrix sub: dimension mismatch");
X.SetDims(n, m);
long i, j;
for (i = 1; i <= n; i++)
for (j = 1; j <= m; j++)
sub(X(i,j), A(i,j), B(i,j));
}
void negate(mat_ZZ_p& X, const mat_ZZ_p& A)
{
long n = A.NumRows();
long m = A.NumCols();
X.SetDims(n, m);
long i, j;
for (i = 1; i <= n; i++)
for (j = 1; j <= m; j++)
negate(X(i,j), A(i,j));
}
void mul_aux(mat_ZZ_p& X, const mat_ZZ_p& A, const mat_ZZ_p& B)
{
long n = A.NumRows();
long l = A.NumCols();
long m = B.NumCols();
if (l != B.NumRows())
Error("matrix mul: dimension mismatch");
X.SetDims(n, m);
long i, j, k;
ZZ acc, tmp;
for (i = 1; i <= n; i++) {
for (j = 1; j <= m; j++) {
clear(acc);
for(k = 1; k <= l; k++) {
mul(tmp, rep(A(i,k)), rep(B(k,j)));
add(acc, acc, tmp);
}
conv(X(i,j), acc);
}
}
}
void mul(mat_ZZ_p& X, const mat_ZZ_p& A, const mat_ZZ_p& B)
{
if (&X == &A || &X == &B) {
mat_ZZ_p tmp;
mul_aux(tmp, A, B);
X = tmp;
}
else
mul_aux(X, A, B);
}
static
void mul_aux(vec_ZZ_p& x, const mat_ZZ_p& A, const vec_ZZ_p& b)
{
long n = A.NumRows();
long l = A.NumCols();
if (l != b.length())
Error("matrix mul: dimension mismatch");
x.SetLength(n);
long i, k;
ZZ acc, tmp;
for (i = 1; i <= n; i++) {
clear(acc);
for (k = 1; k <= l; k++) {
mul(tmp, rep(A(i,k)), rep(b(k)));
add(acc, acc, tmp);
}
conv(x(i), acc);
}
}
void mul(vec_ZZ_p& x, const mat_ZZ_p& A, const vec_ZZ_p& b)
{
if (&b == &x || A.position1(x) != -1) {
vec_ZZ_p tmp;
mul_aux(tmp, A, b);
x = tmp;
}
else
mul_aux(x, A, b);
}
static
void mul_aux(vec_ZZ_p& x, const vec_ZZ_p& a, const mat_ZZ_p& B)
{
long n = B.NumRows();
long l = B.NumCols();
if (n != a.length())
Error("matrix mul: dimension mismatch");
x.SetLength(l);
long i, k;
ZZ acc, tmp;
for (i = 1; i <= l; i++) {
clear(acc);
for (k = 1; k <= n; k++) {
mul(tmp, rep(a(k)), rep(B(k,i)));
add(acc, acc, tmp);
}
conv(x(i), acc);
}
}
void mul(vec_ZZ_p& x, const vec_ZZ_p& a, const mat_ZZ_p& B)
{
if (&a == &x) {
vec_ZZ_p tmp;
mul_aux(tmp, a, B);
x = tmp;
}
else
mul_aux(x, a, B);
}
void ident(mat_ZZ_p& X, long n)
{
X.SetDims(n, n);
long i, j;
for (i = 1; i <= n; i++)
for (j = 1; j <= n; j++)
if (i == j)
set(X(i, j));
else
clear(X(i, j));
}
void determinant(ZZ_p& d, const mat_ZZ_p& M_in)
{
long k, n;
long i, j;
long pos;
ZZ t1, t2;
ZZ *x, *y;
const ZZ& p = ZZ_p::modulus();
n = M_in.NumRows();
if (M_in.NumCols() != n)
Error("determinant: nonsquare matrix");
if (n == 0) {
set(d);
return;
}
vec_ZZVec M;
sqr(t1, p);
mul(t1, t1, n);
M.SetLength(n);
for (i = 0; i < n; i++) {
M[i].SetSize(n, t1.size());
for (j = 0; j < n; j++)
M[i][j] = rep(M_in[i][j]);
}
ZZ det;
set(det);
for (k = 0; k < n; k++) {
pos = -1;
for (i = k; i < n; i++) {
rem(t1, M[i][k], p);
M[i][k] = t1;
if (pos == -1 && !IsZero(t1))
pos = i;
}
if (pos != -1) {
if (k != pos) {
swap(M[pos], M[k]);
NegateMod(det, det, p);
}
MulMod(det, det, M[k][k], p);
// make M[k, k] == -1 mod p, and make row k reduced
InvMod(t1, M[k][k], p);
NegateMod(t1, t1, p);
for (j = k+1; j < n; j++) {
rem(t2, M[k][j], p);
MulMod(M[k][j], t2, t1, p);
}
for (i = k+1; i < n; i++) {
// M[i] = M[i] + M[k]*M[i,k]
t1 = M[i][k]; // this is already reduced
x = M[i].elts() + (k+1);
y = M[k].elts() + (k+1);
for (j = k+1; j < n; j++, x++, y++) {
// *x = *x + (*y)*t1
mul(t2, *y, t1);
add(*x, *x, t2);
}
}
}
else {
clear(d);
return;
}
}
conv(d, det);
}
long IsIdent(const mat_ZZ_p& A, long n)
{
if (A.NumRows() != n || A.NumCols() != n)
return 0;
long i, j;
for (i = 1; i <= n; i++)
for (j = 1; j <= n; j++)
if (i != j) {
if (!IsZero(A(i, j))) return 0;
}
else {
if (!IsOne(A(i, j))) return 0;
}
return 1;
}
void transpose(mat_ZZ_p& X, const mat_ZZ_p& A)
{
long n = A.NumRows();
long m = A.NumCols();
long i, j;
if (&X == & A) {
if (n == m)
for (i = 1; i <= n; i++)
for (j = i+1; j <= n; j++)
swap(X(i, j), X(j, i));
else {
mat_ZZ_p tmp;
tmp.SetDims(m, n);
for (i = 1; i <= n; i++)
for (j = 1; j <= m; j++)
tmp(j, i) = A(i, j);
X.kill();
X = tmp;
}
}
else {
X.SetDims(m, n);
for (i = 1; i <= n; i++)
for (j = 1; j <= m; j++)
X(j, i) = A(i, j);
}
}
void solve(ZZ_p& d, vec_ZZ_p& X,
const mat_ZZ_p& A, const vec_ZZ_p& b)
{
long n = A.NumRows();
if (A.NumCols() != n)
Error("solve: nonsquare matrix");
if (b.length() != n)
Error("solve: dimension mismatch");
if (n == 0) {
set(d);
X.SetLength(0);
return;
}
long i, j, k, pos;
ZZ t1, t2;
ZZ *x, *y;
const ZZ& p = ZZ_p::modulus();
vec_ZZVec M;
sqr(t1, p);
mul(t1, t1, n);
M.SetLength(n);
for (i = 0; i < n; i++) {
M[i].SetSize(n+1, t1.size());
for (j = 0; j < n; j++)
M[i][j] = rep(A[j][i]);
M[i][n] = rep(b[i]);
}
ZZ det;
set(det);
for (k = 0; k < n; k++) {
pos = -1;
for (i = k; i < n; i++) {
rem(t1, M[i][k], p);
M[i][k] = t1;
if (pos == -1 && !IsZero(t1)) {
pos = i;
}
}
if (pos != -1) {
if (k != pos) {
swap(M[pos], M[k]);
NegateMod(det, det, p);
}
MulMod(det, det, M[k][k], p);
// make M[k, k] == -1 mod p, and make row k reduced
InvMod(t1, M[k][k], p);
NegateMod(t1, t1, p);
for (j = k+1; j <= n; j++) {
rem(t2, M[k][j], p);
MulMod(M[k][j], t2, t1, p);
}
for (i = k+1; i < n; i++) {
// M[i] = M[i] + M[k]*M[i,k]
t1 = M[i][k]; // this is already reduced
x = M[i].elts() + (k+1);
y = M[k].elts() + (k+1);
for (j = k+1; j <= n; j++, x++, y++) {
// *x = *x + (*y)*t1
mul(t2, *y, t1);
add(*x, *x, t2);
}
}
}
else {
clear(d);
return;
}
}
X.SetLength(n);
for (i = n-1; i >= 0; i--) {
clear(t1);
for (j = i+1; j < n; j++) {
mul(t2, rep(X[j]), M[i][j]);
add(t1, t1, t2);
}
sub(t1, t1, M[i][n]);
conv(X[i], t1);
}
conv(d, det);
}
void inv(ZZ_p& d, mat_ZZ_p& X, const mat_ZZ_p& A)
{
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -