亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? zzx1.cpp

?? 一個比較通用的大數(shù)運(yùn)算庫
?? CPP
?? 第 1 頁 / 共 3 頁
字號:


#include <NTL/ZZX.h>

#include <NTL/new.h>

NTL_START_IMPL





void conv(zz_pX& x, const ZZX& a)
{
   conv(x.rep, a.rep);
   x.normalize();
}


void conv(ZZX& x, const zz_pX& a)
{
   conv(x.rep, a.rep);
   x.normalize();
}


long CRT(ZZX& gg, ZZ& a, const zz_pX& G)
{
   long n = gg.rep.length();

   long p = zz_p::modulus();

   ZZ new_a;
   mul(new_a, a, p);

   long a_inv;
   a_inv = rem(a, p);
   a_inv = InvMod(a_inv, p);

   long p1;
   p1 = p >> 1;

   ZZ a1;
   RightShift(a1, a, 1);

   long p_odd = (p & 1);

   long modified = 0;

   long h;
   ZZ ah;

   long m = G.rep.length();

   long max_mn = max(m, n);

   gg.rep.SetLength(max_mn);

   ZZ g;
   long i;

   for (i = 0; i < n; i++) {
      if (!CRTInRange(gg.rep[i], a)) {
         modified = 1;
         rem(g, gg.rep[i], a);
         if (g > a1) sub(g, g, a);
      }
      else
         g = gg.rep[i];
   
      h = rem(g, p);

      if (i < m)
         h = SubMod(rep(G.rep[i]), h, p);
      else
         h = NegateMod(h, p);

      h = MulMod(h, a_inv, p);
      if (h > p1)
         h = h - p;
   
      if (h != 0) {
         modified = 1;
         mul(ah, a, h);
   
         if (!p_odd && g > 0 && (h == p1))
            sub(g, g, ah);
         else
            add(g, g, ah);
      }

      gg.rep[i] = g;
   }


   for (; i < m; i++) {
      h = rep(G.rep[i]);
      h = MulMod(h, a_inv, p);
      if (h > p1)
         h = h - p;
   
      modified = 1;
      mul(g, a, h);
      gg.rep[i] = g;
   }

   gg.normalize();
   a = new_a;

   return modified;
}

long CRT(ZZX& gg, ZZ& a, const ZZ_pX& G)
{
   long n = gg.rep.length();

   const ZZ& p = ZZ_p::modulus();

   ZZ new_a;
   mul(new_a, a, p);

   ZZ a_inv;
   rem(a_inv, a, p);
   InvMod(a_inv, a_inv, p);

   ZZ p1;
   RightShift(p1, p, 1);

   ZZ a1;
   RightShift(a1, a, 1);

   long p_odd = IsOdd(p);

   long modified = 0;

   ZZ h;
   ZZ ah;

   long m = G.rep.length();

   long max_mn = max(m, n);

   gg.rep.SetLength(max_mn);

   ZZ g;
   long i;

   for (i = 0; i < n; i++) {
      if (!CRTInRange(gg.rep[i], a)) {
         modified = 1;
         rem(g, gg.rep[i], a);
         if (g > a1) sub(g, g, a);
      }
      else
         g = gg.rep[i];
   
      rem(h, g, p);

      if (i < m)
         SubMod(h, rep(G.rep[i]), h, p);
      else
         NegateMod(h, h, p);

      MulMod(h, h, a_inv, p);
      if (h > p1)
         sub(h, h, p);
   
      if (h != 0) {
         modified = 1;
         mul(ah, a, h);
   
         if (!p_odd && g > 0 && (h == p1))
            sub(g, g, ah);
         else
            add(g, g, ah);
      }

      gg.rep[i] = g;
   }


   for (; i < m; i++) {
      h = rep(G.rep[i]);
      MulMod(h, h, a_inv, p);
      if (h > p1)
         sub(h, h, p);
   
      modified = 1;
      mul(g, a, h);
      gg.rep[i] = g;
   }

   gg.normalize();
   a = new_a;

   return modified;
}




/* Compute a = b * 2^l mod p, where p = 2^n+1. 0<=l<=n and 0<b<p are
   assumed. */
static void LeftRotate(ZZ& a, const ZZ& b, long l, const ZZ& p, long n)
{
  if (l == 0) {
    if (&a != &b) {
      a = b;
    }
    return;
  }

  /* tmp := upper l bits of b */
  static ZZ tmp;
  RightShift(tmp, b, n - l);
  /* a := 2^l * lower n - l bits of b */
  trunc(a, b, n - l);
  LeftShift(a, a, l);
  /* a -= tmp */
  sub(a, a, tmp);
  if (sign(a) < 0) {
    add(a, a, p);
  }
}


/* Compute a = b * 2^l mod p, where p = 2^n+1. 0<=p<b is assumed. */
static void Rotate(ZZ& a, const ZZ& b, long l, const ZZ& p, long n)
{
  if (IsZero(b)) {
    clear(a);
    return;
  }

  /* l %= 2n */
  if (l >= 0) {
    l %= (n << 1);
  } else {
    l = (n << 1) - 1 - (-(l + 1) % (n << 1));
  }

  /* a = b * 2^l mod p */
  if (l < n) {
    LeftRotate(a, b, l, p, n);
  } else {
    LeftRotate(a, b, l - n, p, n);
    SubPos(a, p, a);
  }
}



/* Fast Fourier Transform. a is a vector of length 2^l, 2^l divides 2n,
   p = 2^n+1, w = 2^r mod p is a primitive (2^l)th root of
   unity. Returns a(1),a(w),...,a(w^{2^l-1}) mod p in bit-reverse
   order. */
static void fft(vec_ZZ& a, long r, long l, const ZZ& p, long n)
{
  long round;
  long off, i, j, e;
  long halfsize;
  ZZ tmp, tmp1;

  for (round = 0; round < l; round++, r <<= 1) {
    halfsize =  1L << (l - 1 - round);
    for (i = (1L << round) - 1, off = 0; i >= 0; i--, off += halfsize) {
      for (j = 0, e = 0; j < halfsize; j++, off++, e+=r) {
	/* One butterfly : 
	 ( a[off], a[off+halfsize] ) *= ( 1  w^{j2^round} )
	                                ( 1 -w^{j2^round} ) */
	/* tmp = a[off] - a[off + halfsize] mod p */
	sub(tmp, a[off], a[off + halfsize]);
	if (sign(tmp) < 0) {
	  add(tmp, tmp, p);
	}
	/* a[off] += a[off + halfsize] mod p */
	add(a[off], a[off], a[off + halfsize]);
	sub(tmp1, a[off], p);
	if (sign(tmp1) >= 0) {
	  a[off] = tmp1;
	}
	/* a[off + halfsize] = tmp * w^{j2^round} mod p */
	Rotate(a[off + halfsize], tmp, e, p, n);
      }
    }
  }
}

/* Inverse FFT. r must be the same as in the call to FFT. Result is
   by 2^l too large. */
static void ifft(vec_ZZ& a, long r, long l, const ZZ& p, long n)
{
  long round;
  long off, i, j, e;
  long halfsize;
  ZZ tmp, tmp1;

  for (round = l - 1, r <<= l - 1; round >= 0; round--, r >>= 1) {
    halfsize = 1L << (l - 1 - round);
    for (i = (1L << round) - 1, off = 0; i >= 0; i--, off += halfsize) {
      for (j = 0, e = 0; j < halfsize; j++, off++, e+=r) {
	/* One inverse butterfly : 
	 ( a[off], a[off+halfsize] ) *= ( 1               1             )
	                                ( w^{-j2^round}  -w^{-j2^round} ) */
	/* a[off + halfsize] *= w^{-j2^round} mod p */
	Rotate(a[off + halfsize], a[off + halfsize], -e, p, n);
	/* tmp = a[off] - a[off + halfsize] */
	sub(tmp, a[off], a[off + halfsize]);

	/* a[off] += a[off + halfsize] mod p */
	add(a[off], a[off], a[off + halfsize]);
	sub(tmp1, a[off], p);
	if (sign(tmp1) >= 0) {
	  a[off] = tmp1;
	}
	/* a[off+halfsize] = tmp mod p */
	if (sign(tmp) < 0) {
	  add(a[off+halfsize], tmp, p);
	} else {
	  a[off+halfsize] = tmp;
	}
      }
    }
  }
}



/* Multiplication a la Schoenhage & Strassen, modulo a "Fermat" number
   p = 2^{mr}+1, where m is a power of two and r is odd. Then w = 2^r
   is a primitive 2mth root of unity, i.e., polynomials whose product
   has degree less than 2m can be multiplied, provided that the
   coefficients of the product polynomial are at most 2^{mr-1} in
   absolute value. The algorithm is not called recursively;
   coefficient arithmetic is done directly.*/

void SSMul(ZZX& c, const ZZX& a, const ZZX& b)
{
  long na = deg(a);
  long nb = deg(b);

  if (na <= 0 || nb <= 0) {
    PlainMul(c, a, b);
    return;
  }

  long n = na + nb; /* degree of the product */


  /* Choose m and r suitably */
  long l = NextPowerOfTwo(n + 1) - 1; /* 2^l <= n < 2^{l+1} */
  long m2 = 1L << (l + 1); /* m2 = 2m = 2^{l+1} */
  /* Bitlength of the product: if the coefficients of a are absolutely less
     than 2^ka and the coefficients of b are absolutely less than 2^kb, then
     the coefficients of ab are absolutely less than
     (min(na,nb)+1)2^{ka+kb} <= 2^bound. */
  long bound = 2 + NumBits(min(na, nb)) + MaxBits(a) + MaxBits(b);
  /* Let r be minimal so that mr > bound */
  long r = (bound >> l) + 1;
  long mr = r << l;

  /* p := 2^{mr}+1 */
  ZZ p;
  set(p);
  LeftShift(p, p, mr);
  add(p, p, 1);

  /* Make coefficients of a and b positive */
  vec_ZZ aa, bb;
  aa.SetLength(m2);
  bb.SetLength(m2);

  long i;
  for (i = 0; i <= deg(a); i++) {
    if (sign(a.rep[i]) >= 0) {
      aa[i] = a.rep[i];
    } else {
      add(aa[i], a.rep[i], p);
    }
  }

  for (i = 0; i <= deg(b); i++) {
    if (sign(b.rep[i]) >= 0) {
      bb[i] = b.rep[i];
    } else {
      add(bb[i], b.rep[i], p);
    }
  }

  /* 2m-point FFT's mod p */
  fft(aa, r, l + 1, p, mr);
  fft(bb, r, l + 1, p, mr);

  /* Pointwise multiplication aa := aa * bb mod p */
  ZZ tmp, ai;
  for (i = 0; i < m2; i++) {
    mul(ai, aa[i], bb[i]);
    if (NumBits(ai) > mr) {
      RightShift(tmp, ai, mr);
      trunc(ai, ai, mr);
      sub(ai, ai, tmp);
      if (sign(ai) < 0) {
	add(ai, ai, p);
      }
    }
    aa[i] = ai;
  }
  
  ifft(aa, r, l + 1, p, mr);

  /* Retrieve c, dividing by 2m, and subtracting p where necessary */
  c.rep.SetLength(n + 1);
  for (i = 0; i <= n; i++) {
    ai = aa[i];
    ZZ& ci = c.rep[i];
    if (!IsZero(ai)) {
      /* ci = -ai * 2^{mr-l-1} = ai * 2^{-l-1} = ai / 2m mod p */
      LeftRotate(ai, ai, mr - l - 1, p, mr);
      sub(tmp, p, ai);
      if (NumBits(tmp) >= mr) { /* ci >= (p-1)/2 */
	negate(ci, ai); /* ci = -ai = ci - p */
      }
      else
        ci = tmp;
    } 
    else
       clear(ci);
  }
}


// SSRatio computes how much bigger the SS modulus must be
// to accomodate the necessary roots of unity.
// This is useful in determining algorithm crossover points.

double SSRatio(long na, long maxa, long nb, long maxb)
{
  if (na <= 0 || nb <= 0) return 0;

  long n = na + nb; /* degree of the product */


  long l = NextPowerOfTwo(n + 1) - 1; /* 2^l <= n < 2^{l+1} */
  long bound = 2 + NumBits(min(na, nb)) + maxa + maxb;
  long r = (bound >> l) + 1;
  long mr = r << l;

  return double(mr + 1)/double(bound);
}

void HomMul(ZZX& x, const ZZX& a, const ZZX& b)
{
   if (&a == &b) {
      HomSqr(x, a);
      return;
   }

   long da = deg(a);
   long db = deg(b);

   if (da < 0 || db < 0) {
      clear(x);
      return;
   }

   long bound = 2 + NumBits(min(da, db)+1) + MaxBits(a) + MaxBits(b);


   ZZ prod;
   set(prod);

   long i, nprimes;

   zz_pBak bak;
   bak.save();

   for (nprimes = 0; NumBits(prod) <= bound; nprimes++) {
      if (nprimes >= NumFFTPrimes)
         zz_p::FFTInit(nprimes);
      mul(prod, prod, FFTPrime[nprimes]);
   }


   ZZ coeff;
   ZZ t1;
   long tt;

   vec_ZZ c;

   c.SetLength(da+db+1);

   long j;

   for (i = 0; i < nprimes; i++) {
      zz_p::FFTInit(i);
      long p = zz_p::modulus();

      div(t1, prod, p);
      tt = rem(t1, p);
      tt = InvMod(tt, p);
      mul(coeff, t1, tt);

      zz_pX A, B, C;

      conv(A, a);
      conv(B, b);
      mul(C, A, B);

      long m = deg(C);

      for (j = 0; j <= m; j++) {
         /* c[j] += coeff*rep(C.rep[j]) */
         mul(t1, coeff, rep(C.rep[j]));
         add(c[j], c[j], t1); 
      }
   }

   x.rep.SetLength(da+db+1);

   ZZ prod2;
   RightShift(prod2, prod, 1);

   for (j = 0; j <= da+db; j++) {
      rem(t1, c[j], prod);

      if (t1 > prod2)
         sub(x.rep[j], t1, prod);
      else
         x.rep[j] = t1;
   }

   x.normalize();

   bak.restore();
}

static
long MaxSize(const ZZX& a)
{
   long res = 0;
   long n = a.rep.length();

   long i;
   for (i = 0; i < n; i++) {
      long t = a.rep[i].size();
      if (t > res)
         res = t;
   }

   return res;
}


void mul(ZZX& c, const ZZX& a, const ZZX& b)
{
   if (IsZero(a) || IsZero(b)) {
      clear(c);
      return;
   }

   if (&a == &b) {
      sqr(c, a);
      return;
   }

   long maxa = MaxSize(a);
   long maxb = MaxSize(b);

   long k = min(maxa, maxb);
   long s = min(deg(a), deg(b)) + 1;

   if (s == 1 || (k == 1 && s < 40) || (k == 2 && s < 20) || 
                 (k == 3 && s < 10)) {

      PlainMul(c, a, b);
      return;
   }

   if (s < 80 || (k < 30 && s < 150))  {
      KarMul(c, a, b);
      return;
   }


   if (maxa + maxb >= 40 && 
       SSRatio(deg(a), MaxBits(a), deg(b), MaxBits(b)) < 1.75) 
      SSMul(c, a, b);
   else
      HomMul(c, a, b);
}


void SSSqr(ZZX& c, const ZZX& a)
{
  long na = deg(a);
  if (na <= 0) {
    PlainSqr(c, a);
    return;
  }

  long n = na + na; /* degree of the product */


  long l = NextPowerOfTwo(n + 1) - 1; /* 2^l <= n < 2^{l+1} */
  long m2 = 1L << (l + 1); /* m2 = 2m = 2^{l+1} */
  long bound = 2 + NumBits(na) + 2*MaxBits(a);
  long r = (bound >> l) + 1;
  long mr = r << l;

  /* p := 2^{mr}+1 */
  ZZ p;
  set(p);
  LeftShift(p, p, mr);
  add(p, p, 1);

  vec_ZZ aa;
  aa.SetLength(m2);

  long i;
  for (i = 0; i <= deg(a); i++) {
    if (sign(a.rep[i]) >= 0) {
      aa[i] = a.rep[i];
    } else {
      add(aa[i], a.rep[i], p);
    }
  }


  /* 2m-point FFT's mod p */
  fft(aa, r, l + 1, p, mr);

  /* Pointwise multiplication aa := aa * aa mod p */
  ZZ tmp, ai;
  for (i = 0; i < m2; i++) {
    sqr(ai, aa[i]);
    if (NumBits(ai) > mr) {
      RightShift(tmp, ai, mr);
      trunc(ai, ai, mr);
      sub(ai, ai, tmp);
      if (sign(ai) < 0) {
	add(ai, ai, p);
      }
    }
    aa[i] = ai;
  }
  
  ifft(aa, r, l + 1, p, mr);

  ZZ ci;

  /* Retrieve c, dividing by 2m, and subtracting p where necessary */
  c.rep.SetLength(n + 1);

  for (i = 0; i <= n; i++) {
    ai = aa[i];
    ZZ& ci = c.rep[i];
    if (!IsZero(ai)) {
      /* ci = -ai * 2^{mr-l-1} = ai * 2^{-l-1} = ai / 2m mod p */
      LeftRotate(ai, ai, mr - l - 1, p, mr);
      sub(tmp, p, ai);
      if (NumBits(tmp) >= mr) { /* ci >= (p-1)/2 */
	negate(ci, ai); /* ci = -ai = ci - p */
      }
      else
        ci = tmp;
    } 
    else
       clear(ci);
  }
}

void HomSqr(ZZX& x, const ZZX& a)
{

   long da = deg(a);

   if (da < 0) {
      clear(x);
      return;
   }

   long bound = 2 + NumBits(da+1) + 2*MaxBits(a);


   ZZ prod;
   set(prod);

   long i, nprimes;

   zz_pBak bak;
   bak.save();

   for (nprimes = 0; NumBits(prod) <= bound; nprimes++) {
      if (nprimes >= NumFFTPrimes)
         zz_p::FFTInit(nprimes);
      mul(prod, prod, FFTPrime[nprimes]);
   }


   ZZ coeff;
   ZZ t1;
   long tt;

   vec_ZZ c;

   c.SetLength(da+da+1);

   long j;

   for (i = 0; i < nprimes; i++) {
      zz_p::FFTInit(i);
      long p = zz_p::modulus();

      div(t1, prod, p);
      tt = rem(t1, p);
      tt = InvMod(tt, p);
      mul(coeff, t1, tt);

      zz_pX A, C;

      conv(A, a);
      sqr(C, A);

      long m = deg(C);

      for (j = 0; j <= m; j++) {
         /* c[j] += coeff*rep(C.rep[j]) */
         mul(t1, coeff, rep(C.rep[j]));
         add(c[j], c[j], t1); 
      }
   }

   x.rep.SetLength(da+da+1);

   ZZ prod2;
   RightShift(prod2, prod, 1);

   for (j = 0; j <= da+da; j++) {
      rem(t1, c[j], prod);

      if (t1 > prod2)
         sub(x.rep[j], t1, prod);
      else
         x.rep[j] = t1;
   }

   x.normalize();

   bak.restore();
}


void sqr(ZZX& c, const ZZX& a)
{
   if (IsZero(a)) {
      clear(c);
      return;
   }

   long maxa = MaxSize(a);

   long k = maxa;
   long s = deg(a) + 1;

   if (s == 1 || (k == 1 && s < 50) || (k == 2 && s < 25) || 
                 (k == 3 && s < 25) || (k == 4 && s < 10)) {

      PlainSqr(c, a);
      return;
   }

   if (s < 80 || (k < 30 && s < 150))  {
      KarSqr(c, a);
      return;
   }

   long mba = MaxBits(a);
   
   if (2*maxa >= 40 && 
       SSRatio(deg(a), mba, deg(a), mba) < 1.75) 
      SSSqr(c, a);
   else
      HomSqr(c, a);
}


void mul(ZZX& x, const ZZX& a, const ZZ& b)
{
   ZZ t;
   long i, da;

   const ZZ *ap;
   ZZ* xp;

   if (IsZero(b)) {
      clear(x);
      return;
   }

   t = b;
   da = deg(a);
   x.rep.SetLength(da+1);
   ap = a.rep.elts();
   xp = x.rep.elts();

   for (i = 0; i <= da; i++) 
      mul(xp[i], ap[i], t);
}

void mul(ZZX& x, const ZZX& a, long b)
{
   long i, da;

   const ZZ *ap;
   ZZ* xp;

   if (b == 0) {
      clear(x);
      return;
   }

   da = deg(a);
   x.rep.SetLength(da+1);
   ap = a.rep.elts();
   xp = x.rep.elts();

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
99精品黄色片免费大全| 欧美日韩精品一区视频| 亚洲电影第三页| 久久久久国产一区二区三区四区 | 久久精品99久久久| 亚洲日本护士毛茸茸| 欧美xxxx老人做受| 欧美日韩一区不卡| 成人免费观看av| 久久66热偷产精品| 亚洲超丰满肉感bbw| 亚洲欧美在线观看| 久久九九久精品国产免费直播| 欧美区视频在线观看| 91亚洲精品一区二区乱码| 国产一区二区三区在线观看免费视频| 亚洲图片欧美视频| 亚洲欧洲无码一区二区三区| 久久综合999| 91精品国产综合久久久久久久久久| 91亚洲永久精品| eeuss鲁片一区二区三区| 国产一区二区三区电影在线观看 | 国产精品18久久久久久久网站| 日韩精品久久久久久| 亚洲乱码国产乱码精品精可以看 | 亚洲精品中文在线观看| 欧美激情在线一区二区| 久久久不卡网国产精品一区| 欧美xxxx老人做受| 久久综合999| 久久久综合精品| 久久色中文字幕| 亚洲精品在线一区二区| 日韩女优视频免费观看| 日韩精品中文字幕在线不卡尤物| 日韩一区二区麻豆国产| 欧美一区日韩一区| 日韩精品一区在线观看| 日韩欧美你懂的| 精品国产自在久精品国产| 日韩一二三区视频| 精品少妇一区二区三区| 26uuu亚洲婷婷狠狠天堂| 久久综合色天天久久综合图片| 欧美精品一区二| 久久精品日产第一区二区三区高清版| 久久婷婷成人综合色| 欧美高清一级片在线观看| 国产精品麻豆一区二区| 亚洲日本va午夜在线电影| 一区二区三区四区国产精品| 亚洲一区二区偷拍精品| 日韩电影一区二区三区四区| 精品一二线国产| 丁香桃色午夜亚洲一区二区三区| 成人av动漫在线| 欧洲精品在线观看| 69堂亚洲精品首页| 国产视频一区二区在线| 中文字幕在线播放不卡一区| 亚洲乱码中文字幕综合| 天堂午夜影视日韩欧美一区二区| 久久不见久久见免费视频7| 国产一区91精品张津瑜| av中文字幕亚洲| 欧美日韩免费观看一区二区三区 | 日韩一区二区三区四区五区六区| 精品国产伦理网| 中文字幕一区二区视频| 亚洲与欧洲av电影| 免费观看久久久4p| 成人久久视频在线观看| 欧美日韩黄色一区二区| 久久蜜桃香蕉精品一区二区三区| 国产精品国产三级国产专播品爱网 | 亚洲欧洲av一区二区三区久久| 亚洲精品欧美激情| 捆绑调教一区二区三区| 91在线丨porny丨国产| 欧美一区二区三区人| 国产精品女主播在线观看| 天堂成人国产精品一区| 国产99久久久久| 欧美久久久久久久久| 国产精品视频yy9299一区| 日韩精品国产精品| 91小宝寻花一区二区三区| 日韩亚洲欧美在线| 一区二区三区在线视频观看58| 裸体在线国模精品偷拍| 一本久久综合亚洲鲁鲁五月天| 欧美成人精品3d动漫h| 亚洲天堂免费看| 黄一区二区三区| 欧美高清视频www夜色资源网| 欧美激情在线观看视频免费| 美女网站色91| 欧美日韩一区二区三区在线| 国产精品毛片久久久久久| 精品在线你懂的| 欧美老人xxxx18| 一区二区三区日韩精品视频| 国产精品一区免费在线观看| 51久久夜色精品国产麻豆| 亚洲美女视频在线观看| 成人在线视频首页| 亚洲精品在线电影| 日本免费在线视频不卡一不卡二| 色婷婷综合久久久中文字幕| 国产精品麻豆99久久久久久| 韩国v欧美v日本v亚洲v| 日韩一级欧美一级| 亚洲成人免费影院| 色婷婷狠狠综合| 亚洲欧洲国产日本综合| 福利电影一区二区三区| 久久久91精品国产一区二区精品| 蜜桃视频一区二区三区在线观看| 欧美欧美欧美欧美| 亚洲午夜精品网| 欧美综合亚洲图片综合区| 最新国产精品久久精品| 成人爱爱电影网址| 国产精品夫妻自拍| 成人不卡免费av| 国产精品国产a| jlzzjlzz亚洲日本少妇| 国产精品久久久久影院亚瑟| 国产成人夜色高潮福利影视| 久久久天堂av| 国产毛片精品视频| 久久久久久久性| 国产成人在线影院| 国产精品女主播av| 99久久er热在这里只有精品66| 中文字幕五月欧美| 99re这里只有精品6| 亚洲欧洲av另类| 日本韩国视频一区二区| 亚洲电影第三页| 欧美一区二区三区小说| 久久激情五月激情| 久久色成人在线| av在线这里只有精品| 亚洲免费观看高清完整版在线观看熊 | 美国一区二区三区在线播放| 欧美电影免费观看高清完整版在线 | 久久久精品免费观看| 懂色一区二区三区免费观看| 国产精品乱码妇女bbbb| 91丝袜呻吟高潮美腿白嫩在线观看| 亚洲欧美一区二区不卡| 欧美专区日韩专区| 青青草原综合久久大伊人精品优势| 欧美一区二区高清| 国产精品综合网| 一区精品在线播放| 欧美精品1区2区3区| 激情深爱一区二区| 最新久久zyz资源站| 欧美午夜片在线看| 国产中文一区二区三区| 国产精品成人午夜| 制服丝袜中文字幕一区| 激情综合色综合久久| 国产精品久久国产精麻豆99网站| 欧美综合视频在线观看| 久久99九九99精品| 亚洲欧美日韩在线不卡| 欧美夫妻性生活| 成人激情电影免费在线观看| 亚洲福利一区二区| 久久色.com| 欧美日韩国产天堂| 国产精品18久久久久久久网站| 亚洲综合在线免费观看| 日韩欧美国产午夜精品| 99精品视频中文字幕| 日本不卡一区二区| 一区免费观看视频| 日韩欧美一二三四区| 一道本成人在线| 久久99国产乱子伦精品免费| 亚洲靠逼com| 2023国产精品自拍| 欧美视频一区二区三区在线观看 | 欧美日韩国产成人在线免费| 国产九色精品成人porny| 亚洲一二三四久久| 国产精品毛片高清在线完整版| 欧美一区二区三区在线观看视频 | 三级欧美韩日大片在线看| 欧美激情一区二区三区| 欧美一二三区在线| 色婷婷综合视频在线观看| 国产成人一区二区精品非洲| 奇米一区二区三区av| 一区二区三区在线视频播放| 中文字幕精品综合|